A (Not Very Much) Annotated Bibliography on
Integrating Object-Oriented and Logic Programming

Available from menaik.cs.ualberta.ca: pub/oolog

Compiled by: Vladimir Alexiev
vladimir@cs.ualberta.ca

March 27, 1993

Contents
1 Introduction 1
2 Logics to Model Object-Oriented Notions 2
3 Logics for Inheritance Systems;

Modules (Worlds) for Logic Programming 8
4 Languages Integrating OOP and LP 10
5 Implementation-Oriented Developments 15
6 Formal Specification of Object-Oriented Systems 17
7 Connections to Concurrent Logic Programming and Actors 18
8 Connections to Constraint Logic Programming 20
9 Deductive Object-Oriented Databases 20
10 Applications to Knowledge Representation 23
11 Other Applications 25
12 Acknowledgements and Notes 26

1 Introduction

Object-oriented computing emerged in the last decade as an effective means to deal with the “software
crisis” by making the software engineering an easier process. Logic programming on the other hand can be
viewed as an attempt to put (part of) mathematical logic in service to programming. LP is widely used for
applications where it is not quite clear what direction the computation will take (what will be the inputs
and what the outputs) but the relations among the concepts in the domain are clear This is the case for
some Al tasks, prototypical programming, etc. LP, however, largely misses the needed software engineering
devices (modules, information hiding, reuse etc.) to make it a viable choice for large programs.

It would be very useful to integrate OOP and LP in a seamless and natural way in order to exploit the
synergism between the two. An important issue in such an integration would be to preserve the clarity of the
two paradigms and merge them organically so that not to get an ad-hoc conglomerate of unrelated concepts
ala PL/1. The two paradigms are equally basic and self-important so it would not be appropriate to make
one of them the master and the other the slave of such a merger.

A preliminary literature survey of the area shows that right now OOP+LP is a hot topic. Without much
effort it was possible to compile a bibliography of about 180 items; there are at least 50 different mergers
and/or languages proposed. Some of them are approaches one would like to avoid: implementing OOP in
LP or LP in OOP (often very inefficiently), binding the OOP+LP merger to Constraint LP, Concurrent LP
or Deductive and OO Databases (whereas the merger has its own importance) etc. But there are also basic
ideas which seem very attractive: represent message passing by unification, methods by the set of clauses
comprising a predicate, inheritance by extending a predicate with clauses from another logic theory (world,
module) ete.

The main obstacle to a merger seems to be that the LP paradigm does not support the notion of mutable
state: a logic variable is either free or bound once and for all (logic possesses the property of referential
transparency). When represented in LP, most often state is carried by predicate’s parameters. The task of
defining formally what an object is (devising logics to model QO features) seems most important at present
because there is no widely accepted formalization yet and this hinders the smooth implantation of OOP into
LP.

I have used the following sources to compile this bibliography: Computer and Control Abstracts (every-
thing from 1989 to 1992), ACM Guide to Computing Literature (1991 and 1992; this is hardly usable as a
reference), online databases COMPENDEX (1987-1992) and INSPEC (1988(7)-1992; this is most compre-
hensive but T had hardly enough access to it). T have also searched Index to Scientific Reviews and got some
titles but haven’t included them yet. And of course, I have scanned the reference lists of the articles I have
read.

I have tried to outline the boundaries of subareas in the OOP+LP area and to figure out what is already
done and what is still to be done. However the resulting division is imperfect for a number of reasons:

e it 1s highly subjective;
e sometimes a paper falls equally well under two or more divisions;
e papers which I have not read and which have undescriptive title inevitably are classified wrongly;

e I have tried not to split related work by the same author or team: all related articles are put in the
section which best fits the most important of them.

As the title says, this is a not-very-much annotated biblography. It is not completed yet both in the
sense that there are titles I would like to include and, more importantly, I have read only about 30 or 40 of
the articles. My comments are rarely longer than five lines; the ten-line abstracts which you can see with
some of the articles have come form COMPENDEX (and are copied without permission, T guess). Generally
all annotations which do not end on “n Refs” are written by me, but about 10% of them (the shortest ones)
are just “abstracted abstracts” from CCA and have little value. Now you may think that my annotations
are very short and make little sense, but this is because the life is short; and I made it for myself, not for
you :-). However corrections, additions and suggestions for reorganization are most welcome at the address
above. I am not qualified to be and I won’t serve as a referee of all these articles, only with a joint effort
this bibliography could possibly have some value (not that T got a lot of comments yet (.

2 Logics to Model Object-Oriented Notions

This is the subtopic I deem most important at present because we still don’t have a clear logical understanding
of what an object is (at least T don’t; maybe after reading all this T will gain one :-). Object-oriented
computing enjoys most wide acceptance but no semantics for it does yet.

It is not necessarily the case that having a good logic of objects will buy us a good merger of logic
programming with OOP: the particular logic may have little practical value. So having a clear logical
semantics of OOP is probably not a sufficient condition for a good merger, but definitely it is a necessary
one.

Logics which deal only with inheritance or modules for LP are in the next section. Here are logics which
aim at an overall treatment of objects and/or which try to model mutable state. Some of the the logics
included here should probably go to the section Concurrent LP.

A couple of ecclectic remarks about the subarea follow: An early work on OO logic is Maier’s O-LOGIC
[40, 41]. Later it was extended and refined in Kifer’s F-LoGrc [31, 33] and Chen and Warren’s C-LoGIC [5].

Goguen and Meseguer has done a considerable early work falling between this subarea and the one
described in the next section [19, 20].

Another direction is the application of Linear Logic to the problem: Andreoli and Pareschi’s LINEAR
OBJECTS [2, 3,1, 4, 5].

A recent approach by Meyer and Wieringa [45, 53] and by Jungclaus [4, 26] (influenced by Ehrich,
Fiadeiro, Saake and Sernadas) is to use fully the developments in Abstract Data Types and only add object
identities and Dynamic Logic (a form of Modal Logic with modalities formed by events: message sends to
objects) to model changing state.

Uustalu [51] uses Modal Logic tro model inheritance and regards evolution of state the same as inheritance
of behavior: state is inherited from the previous time instant. This approach is somewhat similar to Pimentel
[46].

By the way, should we talk about an “Italian school” in this subarea? (Andreoli, Brogi, Lamma, Leonardi,
Mello, Pareschi)

References

[1] J.-M. Andreoli and R. Pareschi. LO and behold! concurrent structured processes. In ECOOP-
OOPSLA’90, Ottawa, Ontario, 1990. (SIGPLAN Notices, 25(10):44-56, Oct. 1990).

[2] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. In D. H. D.
Warren and P. Szeredi, editors, Seventh International Conference on Logic Programmang, pages 495-510,
Jerusalem, Israel, 1990. The MIT Press.

[3] J.-M. Andreoli and R. Pareschi. Logic programming with linear logic. In Extensions of Logic Program-
ming, LNAI. Springer-Verlag, 1990.

[4] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. New
Generation Computing, 9(3-4):445-473, 1991.
Objects are regarded as proof processes (this is a borrowing from concurrent LP). Object state is modeled by
the arguments occuring during the proof. “Linear” objects mean that there may be more than one literal in the
clause head (non-Horn clauses).

[6] J.-M. Andreoli and R. Pareschi. Linear objects: A logic framework for open system programming.
In A. Voronkov, editor, International Conference on Logic Programming and Automated Reasoning
LPAR’92, pages 448-450, St. Petersburg, Russia, July 1992.

[6] A. Brogi, E. Lamma, and P. Mello. A general framework for structuring logic programs. Technical
report, C.N.R. ” Progetto Finalizzato Sistemi informatici e Calcolo paralello” | 1990.

[7] A. Brogi, E. Lamma, and P. Mello. Objects in a logic programming framework. In A. Voronkov, editor,
First Russian Conference on Logic Programming, number 592 in LNAI, pages 102-113. Springer-Verlag,
1991.

Objects are represented by logic theories, inheritance is expresses as metalevel axioms, messages are equated to
requests to prove a goal. A clear semantic characterization is provided.

(8]

[10]

[11]

[15]

[16]

[17]

A. Brogi and F. Turini. Metalogic for knowledge representation. In J. A. Allen, R. Fikes, and E. Sande-
wall, editors, Principles of Knowledge Representation and Reasoning: Second International Conference,
pages 61-69, Cambridge, CA, 1991. Morgan Kaufmann.

Metalogic is shown adequate to represent a number of KR methods and inference modes: structuring of logic
theories in terms of hypothetical reasoning and contextual LP; object-orientation of theories by means of hear-
archical reasoning/inheritance and encapsulation of theories as objects.

Q. Chen. High-order logic programming framework for complex objects reasoning. In Thirteenth An-
nual International Computer Software and Applications Conference - COMPSAC’89, pages T11-718,
Orlando, FL, 1989.

The theoretical foundations of a strongly typed high-order rule language, HILOG, are developed by introducing
appropriate mathematical concepts to reformulate the logic programming (LP) notions. This work is significant
for enhancing the LP capability to support object orientation, Abstract Data Types, and knowledge represen-
tation with type hierarchies and for applying LP and deductive database techniques to practical applications
involving complex objects. 16 Refs.

W. Chen and D. S. Warren. Objects as intensions (logic programming). In R. A. Kowalski and K. A.
Bowen, editors, Fifth International Conference and Symposium on Logic Programming, pages 404-419,

Seattle, WA, Aug. 1988.

W. Chen and D. S. Warren. C-LOGIC of complex objects. In Eight ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pages 369-378, Philadelphia, PA, Mar. 1989.

Our objective is to have a logical framework for natural representation and manipulation of complex objects.
We start with an analysis of semantic modeling of complex objects; and attempt to understand what are the
fundamental aspects which need to be captured. A logic, called C-LOGIC, is then presented which provides direct
support for what we believe to be basic features of complex objects, including object identity, multi-valued labels
and a dynamic notion of types. C-LOGIC has a simple first order semantics, but it also allows natural specification
of complex objects and gives us a framework for exploring efficient logic deduction over complex objects. (Author
abstract) 24 Refs.

J. W. de Bakker and E. P. de Vink. CCS for OO and LP. In S. Abramsky and T. S. E. Maibaum, edi-
tors, International Joint Conference on Theory and Practice of Software Development (TAPSOFT 91),
Volume 2: Colloguium on Combining Paradigms for Software Development, number 494 in LNCS, pages
1-28, Brighton, UK, Apr. 1991. Springer-Verlag.

The title decrypts to: “Comparative Continuation Semantics for Object-Oriented and Logic Programming”.

H.-D. Ehrich, M. Gogolla, and A. Sernadas. Objects and their specification. In M. Bidoit and C. Choppy,
editors, Eigth Workshop on Abstract Data Types, number 655 in LNCS, pages 40—66. Springer-Verlag,
1992.

H.-D. Ehrich, J. A. Goguen, and A. Sernadas. A categorial theory of objects as observed processes. In
J. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, REX/FOOL Workshop, number 489 in
LNCS, pages 203-228, Noordwijkerhood, Netherlands, 1990. Springer-Verlag, 1991.

H.-D. Ehrich, G. Saake, and A. Sernadas. Concepts of object-orientation. In R. Studer, editor, Second
Workshop of “Informationssysteme und Kunstliche Intelligenz: Modellierung”, number 322 in IFB,
pages 1-19, Ulm, Germany, 1992. Springer-Verlag.

J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects. In J. W. deBakker,
W. P. deRoever, and G. Rozenberg, editors, REX/FOOL Workshop, number 489 in LNCS, pages 275—
310, Noordwijkerhood, Netherlands, 1990. Springer-Verlag.

J. C. Freytag, R. Manthey, and M. Wallace. Mapping object-oriented concepts into relational concepts by
meta-compilation in a logic programming environment. In K. R. Ditrich, editor, Secont International

[25]

[26]

[27]

[28]

Workshop on Advances in Object-Oriented Database Systems, pages 204-208, Ebernburg, Germany,
Sept. 1988.

H. Gallaire. Merging objects and logic programming: Relational semantics. In AAAI-86: Fifth National
Conference on Artificial Intelligence, pages 754-758, Philadelphia, PA, Aug. 1986.

J. A. Goguen and J. Meseguer. Equality, types, modules and generics for logic programming. In Logic
Programmang: Relations, Functions and Equations. Prentice-Hall, 1986.

J. A. Goguen and J. Meseguer. Unifying functional, object-oriented and relational programming with
logical semantics. In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-
grammaing, pages 417-477, Cambridge, MA, 1987. MIT Press.

J. A. Goguen and D. Wolfram. On types and FOOPs. In R. Meersman et al., editors, Object-Oriented
Databases: Analysis, Design and Construction, pages 1-22. North-Holland, 1991.

J. Grabowski. Metaprograms for change, assumptions, objects, and inheritance. In A. Pettorossi, editor,
Third International Workshop on Meta-Programmaing in Logic, META-92, pages 336-351, Uppsala,
Sweden, June 1992.

C. A. Gunter and J. C. Mitchell. Theoretical Aspects of Object-Oriented Programming: Types, Seman-
tics, and Language Design. The MIT Press, 1993. To appear.

T. Hartmann, R. Jungclaus, and G. Saake. Aggregation in a behavior oriented object model. In O. L.
Madsen, editor, Furopean Conference on Object-Oriented Programming (ECOOP’92), number 615 in
LNCS, pages 57-77, Utrecht, Netherlands, 1992. Springer-Verlag.

Y. J. Hiang. Epistemic logics and epistemic objects. In UK I'T 88 Conference Publication, pages 120-123,
Swansea, UK, July 1988.

R. Jungclaus. Logic-Based Modeling of Dynamic Object Systems. PhD thesis, Technical University
Braunschweig, Germany, 1993.

R. Jungclaus and G. Saake. Formal specification of object-oriented systems. In S. Abramsky and T. S. E.
Maibaum, editors, International Joint Conference on Theory and Practice of Software Development
(TAPSOFT’91), Volume 2: Colloguium on Combining Paradigms for Software Development, number
494 in LNCS, pages 60-82, Brighton, UK, Apr. 1991. Springer-Verlag.

D. Kato, T. Kikuchi, R. Nakajima, J. Saawada, and T. Tsuiki. Modal logic programming. In VDM &
Z: Formal Methods in Software Development, pages 29-40, Kiel, Germany, Apr. 1990.

Presents several languages based on Modal Logic which is useful not only for temporal reasoning but also for
structuring. Overview of the work done at Kyoto University, Japan. 13 Refs.

N. Kesim and M. Sergot. On the evolution of objects in a logic programming framework. In International
Conference on Fifth Generation Computer Systems, pages 1052-1060, ICOT, Japan, 1992.

M. Kifer. A first-order formalization of object-oriented languages. Data Engineering, 14(2):13-17, June
1991.

M. Kifer and G. Lansen. F-LoGIC: A higher order language for reasoning about objects, inheritance
and scheme. In 1989 ACM SIGMOD International Conference on Management of Data, portland, OR,
May 1989. (SIGMOD Record 18(2):134-146, Feb. 1990).

M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages.

Technical Report 90/14, SUNY at Stony Brook, Aug. 1990.

[33]

[37]

M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier’s O-LOGIC revisited). In
Eight ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 379-393,
Philadelphia, PA, Mar. 1989.

We present a logic for reasoning about complex objects, which is a revised and significantly extended version
of Maier’s O-LOGIC. The logic naturally supports complex objects, object identity, deduction is tolerant to
inconsistent data, and has many other interesting features. It elegantly combines the object-oriented and value-
oriented paradigms and, in particular, contains all of the predicate calculus as a special case. Our treatment of
sets 1s also noteworthy: it is more general than ELPS and COL, yet it avoids the semantic problems encountered
in LDL. The proposed logic has a sound and complete resolution-based proof procedure. (Author abstract) 45
Refs.

C. S. Kwok. A survey of structuring mechanisms for logic programs. In International Computer Science
Conference, pages 179-188, Hong Kong, Dec. 1988.

Three mechanisms are surveyed: modularization, object-orientation and use of metalanguage. 82 Refs.

E. Laenens, D. Sacca, and D. Vermeir. Extending logic programming. In 1990 ACM SIGMOD Interna-
tional Conference on Management of Data, Atlantic City, NJ, May 1990. (SIGMOD Record 19(2):184-
193, Feb. 1990).

E. Laenens and D. Vermeir. A logical basis for object-oriented programming. In J. van Eijck, edi-
tor, Furopean Workshop on Logics in Artificial Intelligence (JELIA’90), pages 317-332, Amsterdam,
Netherlands, Sept. 1990.

Describes Ordered Logic (OL) which models object identity, multiple inheritance, defaults. It considers partially-
ordered sets of logic theories.

L. Leonardi and P. Mello. Combining logic- and object-oriented programming language paradigms.
In B. D. Shriver, editor, Twenty-First Annual Hawawr International Conference on System Sciences,
volume II: Software Track, pages 376-385, Kailua-Kona, HI, Jan. 1988.

The usefulness and synergetic advantages of combining logic- and object-oriented programming in a declarative
framework are explored. Rather than present another specific combination of logic and object programming, the
authors discuss different kinds of extensions. 33 refs. (This is a review of the developments in the area
until 1987).

R. Li and A. Sernadas. Reasoning about objects using a tableau method. Journal of Logic Computing,

1(5):575-611, Oct. 1991.

P. Loucopoulos and R. Zicari, editors. Describing and Structuring Objects for Conceptual Schema

Development, Chichester, UK, 1991. John Wiley & Sons.
D. Maier. A logic for objects. Technical Report CS/E-86-012, Oregon Graduate Center, Nov. 1986.

D. Maier. A logic for objects. In J. Minker, editor, Workshop on Foundations of Deductive Databases
and Logic Programmang, pages 6-26, 1986.

P. Mello and A. Natali. Objects as communicating PROLOG units. In ECOOP’87: European Conference
on Object-Oriented Programming, number 276 in LNCS, pages 181-192, Paris, June 1987. Springer-
Verlag.

J. Meseguer. A logical theory of concurrent objects. In ECOOP/OOPSLA’90, Ottawa, Ontario, 1990.
(SIGPLAN Notices, 25(10):101-115, Oct. 1990).

J. Meseguer. Multiparadigm logic programming. In G. Levi and H. Kirchner, editors, Third International
Conference on Algebraic and Logic Programming, number 632 in LNCS, pages 158-200. Springer-Verlag,
1992.

[45]

[51]

[52]

J.-J. C. Meyer and R. J. Wieringa. Actor-oriented system specification with dynamic logic. In S. Abram-
sky and T. S. E. Maibaum, editors, International Joint Conference on Theory and Practice of Software
Development (TAPSOFT’91), Volume 2: Colloquium on Combining Paradigms for Software Develop-
ment, number 494 in LNCS, pages 337-357, Brighton, UK, Apr. 1991. Springer-Verlag.

See also [53].

S. G. Pimentel and J. L. Cuadrado. A Horn clause theory of inheritance and temporal reasoning. In
J. P. Martinsand and E. M. Morgado, editors, EPIA ’89: Fourth Portuguese Conference on Artificial
Intelligence, number 390 in LNCS, pages 63-72, Lisbon, Portugal, Sept. 1989. Springer-Verlag.

G. Razek. Combining objects and relations. SIGPLAN Notices, 27(12):66-70, Dec. 1992.

U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In 1988 ACM
Conference on Lisp and Functional Programming, pages 289-297, Snowbird, UT, July 1988.

A denotational semantics for SMALLTALK-80 using continuations to model side effects.

A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. The basic building blocks of information
systems. In E. Falkenberg and P. Lindgreen, editors, Information System Concepts: An In-Depth
Analysis, pages 225-246, Namur, Belgium, 1989. North-Holland.

B. Stavtrup. A Proposal Regarding Invisible Logic For Object-Oriented Languages. Journal of Object-
Oriented Programming, 5(1):63-65, 1992.

The author makes a proposal to the ANST C++4 Committee for an extension of the operator-overloading facilities
of C++ so that whitespace can also be used for this purpose. [was halfway through the article when I asked
myself: “Wait a minute, what month is this issue?”. It turned out to be April (now read aloud the first letters
of the title). Stavtrup is, of course, a screwed-up variant of Strostrup.

T. Uustalu. Combining object-oriented and logic paradigms: A modal logic programming approach.
In O. L. Madsen, editor, Furopean Conference on Object-Oriented Programming (ECOOP’92), pages
98-113, June 1992.

Based on the author’s MS Thesis at Tallinn Technical University, Estonia. First a brief account of existing
attempts to integrate OOP and LP is given and a categorization is provided. Then the author describes three
modal logics (MU, MU’ and MU”) which provide for different inheritance modes: overriding/cumulative, syn-
tactic/semantic. Objects can provide/receive iheritance selectively for each predicate (method). State change is
treated exactly as inheritance: objects inherit their state from the previous time instant in the same way they
inherit (part of) their behavior from their ancestors in the inheritance lattice. Thus a two-dimensional modal
logic, 2MU | is proposed.

M. Wand. Type inference for record concatenation and multiple inheritance. In Fourth Annual Sympo-
stum on Logic in Computer Science, pages 92-97, Asilomar Conference Center, Pacific Grove, CA, June
1989. IEEE Computer Society Press. (An extended version appeared in Information and Computation,
93(1):1-15, July 1991).

We show that the type inference problem for a lambda calculus with records, including a record concatenation
operator, is decidable. We show that this calculus does not have principal types, but does have finite complete
sets of types: that is; for any term M in the calculus, there exists an effectively generable finite set of type
schemes such that every typing for M is an instance of one the schemes in the set.

We show how a simple model of object-oriented programming, including hidden instance variables and multiple
inheritance, may be coded in this calculus. We conclude that type inference is decidable for object-oriented
programs, even with multiple inheritance and classes as first-class values.

R. J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel, M. Kifer,
and Y. Masunaga, editors, Second International Congress on Deductive and Object-Oriented Databases

(DOOD’91), number 566 in LNCS, pages 431-452, Munich, Germany, Dec. 1991. Springer-Verlag.
The author first argues that all requirements specified in the OODB Manifesto except object identity and ones

stemming from it (mutable state etc), are accounted for by work done in Abstract Data Types and Equational
Order-sorted logic. After that he describes an extension to account for these notions: dynamic logic. Its central
concept 1s the one of object identity; it models changing state by a modification of the possible worlds semantics
where modalities are created by a special kind of entities: events. The whole system is called Conceptual Model
Specification Language (CMSL). See also [45].

[54] M. I. Wolczko. Semantics of object-oriented languages. Technical Report (and PhD Thesis) UMCS-88-
61, Department of Computer Science, University Manchester, May 1988.

3 Logics for Inheritance Systems;
Modules (Worlds) for Logic Programming

Work on modules for LP (multiple logic theories in one program) and inheritance for logic theories is the
earliest effort to buy structuring concepts to LP: there has been “worlds” even in the early Prolog II of
Colmerauer. Another form of inheritance which is considered in LP is inheritance amongst the data elements
(terms); it modifies the way unification works. There is a wealth of theories of inheritance available in the
literature.

Although in OOP modules and inheritance are completely orthogonal notions, in LP they are kind of
mixed (probably because LP is badly missing both). This is why they are mixed in this section.

The use of the word “worlds” for LP modules is probably just a coincidence with its use in the term
“possible worlds”, but nevertheless various forms of Modal Logics are widely used to formalize notions of
modules and inheritancs.

Monteiro and Porto seem very knowledgeable in this area.

References

[1] K. Akama. Inheritance hierarchy mechanism in PROLOG. In Fifth Conference on Logic Programming,
number 264 in LNCS, pages 12-21, Tokyo, Japan, 1986. Springer-Verlag.
Maintains a class/instance hierarchy. PROLOG variables can be typed by a class name (so-called Class-Bound
Variables). Unification is extended to account for CBVs. Is-a and Part-of hierarchies are treated similarly.

[2] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as explicit coercion (pre-

liminary report). In Fourth Annual Symposium on Logic in Computer Science, pages 112-129, Asilomar
Conference Center, Pacific Grove, CA, June 1989. IEEE Computer Society Press. (An extended version
appeared in Information and Computation, 93(1):172-221, July 1991).
We present a method for providing semantic interpretations for languages which feature inheritance in the frame-
work of statically checked, rich type disciplines. We illustrate our approach on an extension of the language FuN
of Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Our
approach interprets inheritances in FUN and coercion functions already definable in the target of the translation.
Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphic
lambda calculus, thus providing many models for the original language. Our method allows the simultaneous
modeling of parametric polymorphism, recursive types, and inheritance, something that was regarded as prob-
lematic because of the seemingly contradictory characteristics of inheritance and type recursion on higher types.
We identify the main difficulty in providing interpretations for explicit type disciplines featuring inheritance,
namely that programs can type-check in more than one way. Since interpretations follow the type-checking
derivations, coherence theorems are required, (that is, one must prove that the meaning of a program does not
depend on the way it was type-checked), and we do prove them for our semantic method. Interestingly, proving
coherence in the presence of recursive types, variants, and abstract types forced us to reexamine fundamental
equational properties that arise in proof theory (in the form of commutative reductions) and domain theory (in
the form of strict vs. non-strict functions). (Author abstract).

[3]

[9]

[10]

[11]

[12]

[13]

A. Brogi, E. Lamma, and P. Mello. Inheritance and hypothetical reasoning in logic programming.
In L. C. Aiello, editor, 9th Furopean Conference on Artificial Intelligence (ECAI’90), pages 105-110,
Stokholm, Sweden, Aug. 1990.

M. Bugliesi. A declarative view of inheritance in logic programming. In K. Apt, editor, Joint Interna-
tional Conference and Symposium on Logic Programmang, pages 113-127. The MIT Press, 1992.

W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. In OOPSLA’89,
New Orleans, LA, 1989. (SIGPLAN Notices, 24(10):433-443, Oct. 1989).

M. D. A logical analysis of modules in logic programming. Journal of Logic Programming, 1(2):79-108,
1989.

C. Dichev. Logic programming with worlds. In B. du Boulay and V. Sgurev, editors, Artificial Intel-
ligence V: Methodology, Systems, Applications (AIMSA’92), pages 57-66. Elsevier Science Publishers,
1992.

Considers various ways to combine clauses for the same predicate residing in different “worlds” (modules).
Clauses from the subworld (the specialization) can override completely the predicate, or replace only clauses
which unify, or just add themselves to the predicate in the superworld (the generalization).

T. Finin and J. McGuire. Inheritance in logic programming knowledge bases. Journal of Computer

Languages, 16(3-4):290-310, 1991.

K. Furukawa, R. Nakajima, and A. Yonezawa. Modularization and abstraction in logic programming.
New Generation Computing, 1(2):169-178, Dec. 1983.

Y. Goldberg, W. Silverman, and E. Shapiro. Logic programs with inheritance. In International Con-
ference on Fifth Generation Computer Systems, pages 951-960, ICOT, Japan, 1992.

E. Gregoire. Reducing inheritance theories to default logic and logic programs. In H. Jaakkolo and
S. Linnainmaa, editors, Scandinavian Conference on Artificial Intelligence (SCAI’89), pages 493-458,
Tampere, Finland, June 1989.

H. Kauffmann and A. Grumbach. MULTILOG: MULtiple worlds in LOGic programming. In Seventh
Furopean Conference on Artificial Intelligence (ECAI’86), volume 1, pages 291-305, Brighton, UK,
1986.

P. Mello. Inheritance as combination of Horn clause theories. In D. Lenzerini, D. Nardi, and M. Sima,
editors, Inheritance Hierarchies in Knowledge Representation and Programming Languages. Wiley and

Sons, 1991.

L. Monteiro and A. Porto. Contextual logic programming. In G. Levi and M. Martelli, editors, Sizth
International Conference on Logic Programming, pages 284-299. The MIT Press, 1989.

L. Monteiro and A. Porto. Semantic and syntactic inheritance in logic programming. Draft report,
Universidade Nova de Lisboa, Departamento di Informatica, Dec. 1990.

L. Monteiro and A. Porto. A transformational view of inheritance in logic programming. In D. H. D.
Warren and P. Szeredi, editors, Seventh International Conference on Logic Programmang, pages 481-494.

The MIT Press, 1990.

E. Sandewall. Nonmonotonic inference rules for multiple inheritance with exceptions. IFEE,
74(10):1345-1353, Oct. 1986.

The semantics of inheritance ‘hierarchies’ with multiple inheritance and exceptions is discussed, and a par-
tial semantics in terms of a number of structure types is defined. Previously proposed inference systems for
inheritance with exceptions are discussed. A new and improved system is proposed, using a fixed number of

4

nonmonotonic inference rules. The hierarchy is viewed as a set of atomic propositions using the two relations
isa (subsumption) and nisa (nonsubsumption). General results concerning systems of nonmonotonic inference
rules can immediately be applied to the proposed inference system. 7 Refs.

D. T. Sannella and L. A. Wallen. A calculus for the construction of modular PROLOG programs. Journal
of Logic Programmang, 12:147-178, 1992.

C. Solnon and M. Rueher. Inference of inheritance relationships from PROLOG programs: A system
developed with ProroG III. In M. Bruynooghe and M. Wirsung, editors, Programming Languages
Implementation and Logic Programming (PLILP’92), pages 489-490, 1992.

The first step on the way to objects are abstract types (eventually polymorphic). In the theoretical part of the
article types are equated with their extents but in practice the system infers them constructively as a Descartes
product, union or intersection of known types. For logic variables the type of the variable is a subtype of the
intersection of its types in all its occurences in a clause. A further objective is to specialize types using constraints.

R. H. Thomason and J. F. Horty. Logics for inheritance theory. In M. Reinfrank, J. de Kleer, M. L.
Ginsberg, and E. Sandewall, editors, Second International Workshop on Non-Monotonic Reasoning,
pages 220-237, Grassau, Germany, June 1988.

D. Touretzky. The Mathematics of Inheritance Systems. Pitman, London, 1986.

Y.-K. Yang. Behind the inheritance relations in a semantic network. In IEEE Southeastcom 90 —
Technologies Today and Tomorrow, pages 289-296, New Orleans, LA, Apr. 1990.

There are many confused meanings on the use of ISA (is-a), AKO (a-kind-of), and ISPART (is-part) relations.
This problem can be solved only by defining the precise meaning of the ISA; AKO, and ISPART relations, and
by recognizing either a class node or an object node for a given node in a semantic network. The author makes
clear, precise, and consistent definitions for these inheritance relations based on the two fundamental types of
information these relations are intended to represent: classes and objects. The features explored from these
relations make clear the use of these three relations and what properties each has. By dividing the properties
related by ISA, AKO, and ISPART relations into property values and property attributes, it is found that a
property value relates to a specific class or object only and is not an inheritable property, while a property
attribute corresponds to the universal quantification in predicate logic and is inheritable by the descendants of
a class or object. 11 Refs.

Languages Integrating OOP and LP

There are quite a lot of languages (about 30) aiming to integrate OOP and LP. However none of them seems
perfect for reasons discussed in the beginning of Section 2. Nevertheless the good ideas abound.

Languages which are heavily bound to Concurrent LP or Constraint LP are grouped in the corresponding

sections.

Aft-Kaci [1] and Zaniolo [37] are almost “classics” on the subject. Tyugu [31] has done some really early

work in Tallinn, Estonia. McCabe [22] is the only book on the OOP+LP subject known to me. Conery
[5, 4, 6] has got a really nice idea about how to model mutable state by literals which pass from one side of
a clause to the other side. Kahn [15, 16] seems “the guy with the bunch of ideas” (see also Section 7).

References

(1]

H. Ait-Kaci and R. Nasr. LOGIN: A logic programming language with built-in inheritance. Journal of
Logic Programming, 3(3):185-215, Oct. 1986.

An elaboration of the PROLOG language is described in which the notion of first-order term is replaced by a more
general one. This extended form of terms allows the integration of inheritance—an IS-A taxonomy—directly
into the unification process rather than directly through the resolution-based inference mechanism of PROLOG.

10

[10]

[11]

[12]

This results in more efficient computations and enhanced language expressiveness. The language thus obtained,
called LOGIN, subsumes PROLOG, in the sense that conventional PROLOG programs are equally well executed
by LOGIN. (Author abstract) 10 refs.

H. Ait-Kaci and A. Podelski. Towards a meaning of LIFE. In Programming Languages Implementation
and Logic Programming (PLILP’91), pages 255-274, Passau, Germany, Aug. 1991.

Logic, Inheritance, Functions, Equations (LIFE) is regarded as a composition of three separate instances of the
Constraint Logic Programming (CLP) Scheme. Object unification is represented by constraint solving. Type-
theoretic, logical and algebraic renditions of the system are provided.

K. Benkerimi and P. M. Hill. Object-oriented programmingin GODEL: An experiment. In A. Pettorossi,
editor, Third International Workshop on Meta-Programming in Logic (META’92), pages 177-191, Up-
psala, Sweden, June 1992.

J. S. Conery. HOOPS: an object-oriented PROLOG. Technical report, University of Oregon, 1987.

J. S. Conery. Object-oriented programming with First-Order Predicate Calculus. Technical Report
CIS-TR-87-09, University of Oregon, Aug. 1987.

J. S. Conery. Logical objects. In R. A. Kowalski and K. A. Bowen, editors, Fifth International Confer-
ence and Symposium on Logic Programming, pages 420-434, 1988.

Models mutable state by introducing a new kind of literals—object literals—whose arguments carry the state.
A program clause may have object literals both in the body and in the head. The object literal in the body
represents object state prior to executing the method, and the literal in the head represents the state after the
execution, e.g.

push(X), stack(S) :- stack([X[|S]).

pop(X), stack([X[S]) :- stack(S).

The head is deemed a conjunction of literals, therefore "object clauses” are not really clauses (which are dis-
junctions of literals). However this does not change the inference method drastically (it is very similar to normal
binary resolution) because object literals are not pursued by themselves, but only together with the “real” goals.
Thus the proof that some object exists is constructed in parallell with the proof that is has certain properties.

M. Dalal and D. Gandopadhyay. OOLP: A translation approach to object-oriented logic programming.
In W. Kim, J.-M. Nicolas, and S. Nishio, editors, First International Conference on Deductive and
Object-Oriented Databases (DOOD’89), pages 593-606, Kyoto, Japan, Dec. 1989.

The paper describes two languages: OOLP and OOLP+ which are translated to PROLOG.

B. Freeman-Benson. KALEIDOSCOPE: Mixing objects, constraints, and imperative programming. In
ECOOP/OOPSLA’90, Ottawa, Ontario, 1990. (SIGPLAN Notices 25(10):77-88, Oct. 1990).

Tries to integrate the imperative programming paradigm with the declarative-constraint one. The former provides
sequencing, the latter provides object relations. Variables are regarded as streams. Multiple views are a natuaral
consequence of this integration. 32 Refs.

E. Gullichsen. BIGGERTALK: An object-oriented PROLOG. Technical Report STP-125-85, MCC-STP,
Austin, TX, Nov. 1985.

I. H. and K. H. Extending logic programming to object programming: the system LAP. In IJCAI’87,
pages 34-39, Milan, Italy, 1987.

J.S. Hodas and D. Miller. Representing objects in a logic programming language with scoping constructs.
In D. H. D. Warren and P. Szeredi, editors, Seventh International Conference on Logic Programming,

pages 511-526. The MIT Press, 1990.

M. H. Ibrahim. KSL: A reflective object-oriented programming language. In 1988 International Con-
ference on Computer Languages, pages 186-193, Miami Beach, FL, Oct. 1988.

11

[13]

[14]

M. H. Ibrahim and F. A. Cummins. KSL/LogIc: Integration of logic with objects. In 1990 International
Conference on Computer Languages, pages 228-235, New Orleans, LA, Mar. 1990. IEEE Computer
Society Press.

KSI/LogiIc is an integration of logic and object-oriented programming that adds the declarative framework and
deductive reasoning of logic programming to the powerful modeling capabilities of the object-oriented paradigm.
Predicates, logic expressions, and the generalized search protocol of KSL/LOGIC are implemented as an integral
part of KSL, a reflective, object-oriented programming language. KSI./LoGIC provides capabilities that go
beyond those of PROLOG to permit domain-based reasoning, functional arguments, matching of complex object
patterns, and object representation of facts. The syntax and semantics of KSL/LoGIC are described, and the
object implementation of its predicate resolution is examined. 13 Refs.

M. H. Ibrahim and F. A. Cummins. Objects with logic. In Cooperation. ACM 18th Annual Computer
Science Conference, pages 128-133, Washington, DC, Feb. 1990.

This paper describes an approach to the integration of logic and object programming where predicates, logic
expressions, and a generalized search protocol that support PROLOG-like reasoning are implemented as an integral
part of an object-oriented language. This logic programming facility provides 1) domain-based reasoning, 2)
functional arguments, 3) support of the abstraction power of object-oriented languages, and 4) matching of
complex object patterns, none of which are available in PROLOG. The integration does not require logic facts to
be local predicates in the environment; instead, facts are represented as objects in the application model. This
permits recursive reasoning and backtracking on predicates that are defined on different domains. The design
concepts and implementation of this approach are presented and its application is illustrated by an example.
(Author abstract) 10 Refs.

K. M. Kahn. UNIFORM: a language based upon unification which unifies (much of) Lisp, ProroG and
Act 1. In IJCAI’81, pages 933-939, 1981.

This early paper claims that the same program may serve as: function, inverse function, predicate, pattern,
generator. An extended form of unification may serve as pattern matching, evaluation, message passing, inher-
itance (an example of the latter is unifying the description of red-chairs with the description of big-chairs to
get big-red-chairs). Unification is augmented beyond simple PROLOG’s syntactic unification (which is still the
default) by asking the two entities to unify themselves the way they see fit. One can add unification rules (e.g.
that two expressions unify; similarly to the defining rules in non-free word algebras) thus invoking simplification

mechanisms.

K. M. Kahn. INTERMISSION—Actors in PROLOG. In K. L. Clark and S. A. Tarnlund, editors, Logic
Programmang, pages 213-228. Academic Press, 1982.

First discusses deficiencies of PROLOG: mno types (only terms and lists), no lazy evaluation (“virtual data
streams”). Claims that implementing Actors in PROLOG will carry over the well-understood semantics of Pro-
LOG into Actors. The implementation is clean, general, flexible and very inefficient. Each new object/method is
introduced by extending the predicate sent (target, message, result). Therefore there is no compact (at one
place) description of actors: all actor behaviors go through sent. The target is an actor generally of the type
list(type, acquaintances). Delegation: when an actor cannot handle a message, it passes it to its proxy. The

equivalent of instance variables can be added dynamically.

E. Laenens, D. Vermeir, and B. Verdonk. LOCO, a LOgic-based language for Complex Objects. In
ESPRIT’89: Swrth Annual Esprit Conference, pages 604-616, Brussels, Nov. 1989.

Y. Lou and Z. M. Ozsouoglu. LLO: An object-oriented deductive language with methods and method
inheritance. In 1991 ACM SIGMOD International Conference on Management of Data, Denver, CO,
May 1991. (SIGMOD Record, 20(2):198-207, June 1991).

J. Malenfant, G. Lapalme, and J. Vaucher. OBIJIVPROLOG: Metaclasses in logic. In S. Cook, editor,
Furopean Conference on Object-Oriented Programming (ECOOP’89), pages 257-269, Nothingham, UK,
July 1989.

12

[20]

[21]

[22]

[23]

[24]

[25]

J. Malenfant, G. Lapalme, and J. Vaucher. Metaclasses for metaprogramming in logic. In Second
International Symposium on Meta-Programming in Logic, pages 257-271, Leuven, Belgium, Apr. 1990.

J. Malenfant, G. Lapalme, and J. Vaucher. OBIVPROLOG-D: A reflexive object-oriented logic language
for distributed computing. OOPS Messenger, 2(2):78-81, Apr. 1991.
Implemented in QUINTUS PROLOG. Runs on a network of workstations.

F. G. McCabe. Logic & Objects. International Series in Computer Science. Prentice-Hall, 1992.

This is the only book in the area known to me. It is based on the author’s PhD Thesis at Imperial College, Uni-
versity of London (1988). It describes the LoGic & OBJIECTS extension of IC-PrRoLoOG. The language provides
for multiple logic theories, encapsulated in blocks and marked by “labels” (object identifiers). The labels can be
any terms (they may have arguments) thus parameterizing the object theory:

person(Age,Sex): {

sex(S) :- S=Sex. % return sex

likes(Person) :- Person:sex(OtherSex), % call to another object (theory)

OtherSex<>Sex. % hmm

}

A label may inherit another one by “class rules”; the inheritance is accumulating or overriding; multiple inheri-
tance is allowed; there are no explicit classes (prototype-based language):

person<=animal. % class rule: establishes inheritance

person<=socialAgent % multiple inheritance allowed

jim<=person(30,male). % instance0f the same as subclass0f

penguin<<bird. % overriding inheritance: do not inherit "fly"

penguin: {fly :- fail.} % because penguins don’t

It also integrates (conditional) equalities and functions, and has destructive assignment:

merge ([H1|T1], [H2|T2])=[H1|merge (T1, [H2|T2])] :- Hi<=H2.

merge ([H11T1], [H2|T2])=[H2|merge ([H1|T1],T2)] :- H1>H2.

Table of contents: review of a number of mergers; description of the language; discussion of the mixed pro-
gramming methodology which emerges (divide & conquer and browse & modify); examples: L&QO graphics, a
general packer program and a traveling salesman algorithm with graphical interfaces; formal semantics of the
proposed extension by translation of L&O clauses to PROLOG clauses. Although the problem of mutable state
is not addressed (assignment does not count; the semantics just disregards it), the language demonstrates very
convincingly the synergism of OOP+LP.

G. Mints and E. H. Tyugu. The programming system PRIZ. Journal of Symbolic Computing, 5:359-375,
1988. See [31].

C. Moss. An introduction to PROLOG++. Research Report DOC 90/10, Imperial College, London,
June 1990.

7. Palaskas and P. Loucopoulos. AMORE — object-oriented extensions to PROLOG. In Technology of
Object-Oriented Languages and Systems (TOOLS’89), pages 379-393, Paris, France, 1989.

A language for specifying and maintaining information bases. The paper describes also the RUBRIC runtime
system developed in AMORE. 39 Refs.

7. Palaskas, P. Loucopoulos, and F. van Assche. AMORE — object-oriented extensions to PRoLoGfor the
RUBRIC implementation environement. In Sizth Annual ESPRIT Conference, pages 475-489, Brussels,
Belgium, Nov. 1989. Kluwer Academic Prublishers.

J. Plaser. The multiparadigm language G. Journal of Computer Languages, 16(3-4):235-258, 1991.

O. R.A. Towards an algebra for constructing logic programs. In ITEEE Symposium on Logic Programming,

pages 152-160, 1985.

13

[29]

[30]

[31]

[32]

[33]

[34]

F. Staes, E. Laenens, and D. Vermeir. A seamless integration of graphics and dialogues within a logic
based object-oriented language. Journal of Visual Computing, 1(4):313-332, Dec. 1990.
A User Interface subsystem for the Kiwis system implemented in the language LOCO [17]. 9 Refs.

R. B. Terwilliger and P. A. Kirslis. PK/C++: An object-oriented, logic-based, executable specification
language. In Twenty-Second Annual Hawaii International Conference on System Sciences, Kailua-Kona,
HI, Jan. 1989.

ENcoMPASS is an environment that supports software development using formal techniques similar to the Vienna
Development Method (VDM). In ENcOMPASS, software can be specified using the PLEASE family of executable
specification languages. PK/C++, the latest member of the PLEASE family, differs from its predecessor by
having C++ rather than ADA as its base language, by having an operational as well as declarative semantics,
and by being based on flat rather than standard ProLoG. PK/C++ specifications can be used in proofs of
correctness. They are also executable, so that initial specifications can be validated and refinements can be
verified using testing-based techniques. The authors give an overview of ENcompass, describe PK/C++ in
reasonable detail, and give an example of development using the language. 24 Refs.

E. Tyugu. Three new-generation software environments. Communications of the ACM, 34(6):46-59,
June 1991.

The system PRIZ has been under development at the Institute of Cybernetics, Tallinn, Estonia since mid-
seventies. This article describes three environmants of different sophistication based on this system: EXPERT-
PRIZ, a simple expert system shell; C-PRIZ, a language integrating imperative programming (C); and NUT
(New UTopist; UTOPIST was the initial programming language of PRIZ), an object-oriented environment.
Data elements in UTOPIST (attributes of objects) can be bound by both inter- and intra-object relations. These
relations are used by a propositional theorem prover to generate a prooof that it is possible to compute a certain
datum given some other data. This (constuctive) proof is used to synthesize a program which computes the
datum. So PRIZ has a quite non-standard logic component: compile-time proof and program generation in-
stead of run-time clause resolution. These technique are called Propositional Logic Programming and Structural
Program Synthesis. NUT is a prototype-based (as opposed to class-based) language: any object can be used
as a template (type) for a new object (and of course as a component of a new object). Limited polymorphism
is supported through a generic type (any) . It is notable that some of the modern programming paradigms
(constraint programming, object-orientation, employing logic in computation) have been considered so early.

E. H. Tyugu. Propositional logic programming. Computers and Artificial Intelligence (Czechoslovakia),
8(4):357-368, 1989.

E. H. Tyugu et al. NUT—an object-oriented language. Computers and Artificial Intelligence, 5(6):521—
542, 1986.

K. Y. Amalgamating multiple programming paradigms in PRoOLOG. In IJCAI’87, pages 76-86, Milan,
Italy, 1987.

H. Yasukawa, H. Tsuda, and K. Yokota. Objects, properties, and modules in QUIXOTE. In International
Conference on Fifth Generation Computer Systems, pages 257-268, ICOT, Japan, 1992.

S. Yokoi. A PrROLOG based object-oriented language SPOOL and its compiler. In Fifth Conference on
Logic Programming, number 264 in LNCS, pages 116-125, Tokyo, Japan, 1986. Springer-Verlag.
Compiles SPOOL to PROLOG. Methods are represented by PROLOG program clauses and messages by PrROLOG
calls. SPOOL has multiple inheritance and metaclasses.

C. Zaniolo. Object-oriented programming in PROLOG. In International Symposium on Logic Program-
ming, pages 265-270, Atlantic City, Atlanta, Feb. 1984.

Objects are represented as predicates with instance variables modeled by predicate arguments (e.g.
regular-polygon(Sides, Length)). Methods are attached to predicates by a binary constructor Object with:
List-of-methods. Each method is a set of independent clauses which an use the instance variables and delegate

14

5

responsibilities through inheritance. Mutable state is modeled by assert/retract (modification of the logic
program).

Implementation-Oriented Developments

I have gathered in this section papers dealing with implementations of OOP in LP or LP in OOP, treating
specific implementation isues, discussing various environments, describing what seem to be not very complete
and/or general languages, etc.; said shortly, papers I deemed not fitting very well in the previous section.
The distinction however is neither very clear nor principled, so generally one should look in both sections.

References

(1]

G. Castelli and F. Mariani. An EIFFEL class for the integration of object-oriented and declarative
programming. In Technology of Object-Oriented Languages and Systems (TOOLS’89), pages 395-400,
Paris, France, 1989.

An EIFFEL class, Inference, forms the basis for an extensible PROLOG interpreter. 39 Refs.

P. T. Cox. Using object-orientation to implement logic programming. In 1990 ACM SIGSMALL/PC
Symposium on Small Systems, pages 106-114, Arlington, VA, Mar. 1990.
Implemented in PROGRAPH, a picture-based language. 22 Refs.

T. Koschmann and M. W. Evens. Bridging the gap between object-oriented and logic programming.
IEEE Software, 5(4 or 57):36-42, July 1988.

A description is given of an interface that was developed between LLoOPS and Xerox QUiNTUS PrROLOG. LooPps
is an extension to the Xerox Al Environment to support object-oriented programming; Xerox QUINTUS PROLOG
is a version of PROLOG that runs on Xerox Lisp machines. Such a bridge enables all the support tools of both
environments to be accessed, and degradation of performance that occurs when one language is implemented on
top of another is avoided. The interface has three layers. At the lowest level, a set of PROLOG predicates gives
the PROLOG programmer access to LOOPS objects. This lowest level is the bridge from PrRoOLOG to Loops. At
the next level, programming tools in the LOOPS environment let object methods be defined in PROLOG. At the
highest level, the PROLOG programmer can treat PROLOG clauses as LOOPS objects that can be manipulated
outside the PrRoLOG database. Each layer can be used independently. 9 Refs.

E. Lamma, M. P., and N. A. An extended Warren Abstract Machine for the execution of structured
logic programs. Journal of Logic Programmang, 14:187-222, 1992.

D. Lanovaz and D. Szafron. An object-oriented inference engine for PROLOG. Technical Report TR
90-18, University of Alberta, 1990.

Implementation of PROLOG in SMALLTALK. Each clause is a (persistent) object which knows how to unify and
execute itself as well as which other clauses to call. Part of the GODEL project.

G. L. Lazarev. PROLOG/V: PROLOG in the SMALLTALK environment. Dr. Dobb’s Journal of Software
Tools, 13(11/145):68-80, 98-102, Nov. 1988.

Describes briefly (mainly by examples) a commercial PROLOG system developed and integrated in SMALLTALK /V.

M. Levy and R. N. Horspol. Translation of PROLOG to C+4++. Internal report, University of Victoria,
1990.

V. Loia and M. Quaggetto. Extending CLOS towards logic programming: A proposal. OOPS Messen-
ger, 4(1):46-51, Jan. 1993.

Common Lisp Object System (CLOS) provides generic functions, multiple inheritance, meta-object protocol,
and declarative method combination. The authors show how PROLOG can be run in it. Selection rule (which

15

clause to try next) is extended over PROLOG’s one: each clause is an instance of a generic method and can
check for the input/output mode of its head literal (and even finer details like whether an argument is a cons)
before unification. Computiation rule (which subgoal to prove next) is the same as in ProLOG: from left to
right. Backtracking is implemented by CLOS generators employing lazy evaluation (authors define two macros:
send-value and multi-let*). It seems that there is no compiler from PROLOG to this system yet: CLOS
methods are hand-crafted. Bad English.

B. E. Mayfield and J. C. Na. PROLOG methods for COMMON LisP + FLAVORS. In Knowledge-Based
Systems and Neural Networks: Techniques and Applications, pages 29-39, Stillwater, OK, Nov. 1990.
PLOS (ProLoG/Lisp Object System) gives coexistence to PROLOG and COMMON Lisp. It includes extended
inheritance of PROLOG methods.

E. Meirlaen, J. M. Trinon, and R. Venken. An object-based prototyping workbench in ProLOG. In
Fifth Annual ESPRIT Conference, volume 1, pages 423-437, Brussels, Belgium, Nov. 1988.

F. Mellender. An integration of logic and object-oriented programming. SIGPLAN Notices, 23(10):181-
185, 1988.

C. Michel and M. Rueher. Logic programming, object-oriented programming and rapid prototyping. In
Second International Workshop on Software Engineering and its Applications, pages 417-431, Toulouse,
France, Dec. 1989.

T. Reix. SP-OBJECT. Object extensions in the SP-ProLOG Vv.2.1 system. In Technology of Object-
Oriented Languages and Systems (TOOLS’89), pages 395-400, Paris, France, 1989.

SP-PROLOG is the language of choice of Bull SA. The extension is integrated in the system (it is not implemented
by a preprocessor). 33 Refs.

S. Roggenbuck, R. Gebhardt, and W. Ameling. PROLOG as method language in an object-oriented
programming environment (in German). Angewandte Informatik, 31(5):181-188, 1990.

A. Schmidt and F. Belli. Extension of PROLOG for object-oriented programming in logic. In 3rd In-
ternational Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems - IEA/ATE’90, pages 1153-1161, Charleston, SC, July 1991.

In this paper, we attempt extending Logic Programming ‘smoothly’ in order to allow object-orientation in a
PRrROLOG-like environment. We call our extension PROLOOP (Yet another PROLOG-based Language for Object-
Oriented Programming). PROLOOP is the essential component of a PROLOG-based environment (PROVIRO) to
develop knowledge and rule-based expert systems. PROVIRO consists of a series of pragmatic components as to
testing (PROTEST), knowledge version control (PROVERS), self actualization of the documentation (PROS-
ELF), etc. The potential of PROLOOP stems from its simplicity. This simplicity makes PROLOOP easy to use and
to extend, allows to achieve a high degree of reliability of PROLOOP programs, increases their maintainability,
etc. Because of its artlessness, PROLOOP is also a good example for understanding and teaching object-oriented
programming. Nevertheless, PROLOOP possesses sufficient expression power which we demonstrate by including
non-trivial examples produced in a real project. (Author abstract).

E. P. Stabler, Jr. Object-oriented programming in PROLOG. Al Ezpert, pages 46-57, Oct. 1986.

S. Tyszberowicz and A. Yehudai. OBSERV - a prototyping language and environment combining object-
oriented approach, state machines and logic programming. In Twenty-Third Annual Hawaii Interna-
tional Conference on System Sciences, volume II: Software Track, pages 247-256, Kailua-Kona, HI, Jan.
1990.

The OBSERY methodology for software development is based on rapid construction of an executable specification
(or prototype) of a system, which may be examined and modified repeatedly to achieve the desired function-
ality. The objectives of OBSERV also include facilitating a smooth transition to a target system and providing
the means for reusing specification, design, and code of (sub)systems. Of particular interest is the handling of

16

6

embedded systems; which are likely to have concurrency and real-time requirements. The OBSERV prototyping
language combines several paradigms to express the behavior of a system. The object-oriented approach provides
the basic mechanisms for building a system from a collection of objects, with well-defined interfaces between
them. Finite-state machines are used to model the behavior of individual objects. At a lower level, activities
that occur within objects are described with the logic-programming paradigm, thus allowing a nonprocedural
description when possible. An attempt has been made to provide flexible tools for executing (simulating) the
prototype being built, as well as for browsing and static checking. The current implementation of the tools is
window-based but not graphical. 26 Refs.

S.-i. Wu. Integrating logic and object-oriented programming. OOPS Messenger, 2(1):28-37, Jan. 1991.
Describes a logic extension to C4++ called LoGgiC++4. Member functions of C4++4 classes can be written in
ProLoG. A preprocessor accepts methods written in PROLOG and produces C++. The implementation does
not seem horribly efficient.

S.-1. Wu. LoGIC++4: An integrated logic and object-oriented language. In USENIX C++ Conference,
pages 235-243, Washington, DC, Apr. 1991.

Formal Specification of Object-Oriented Systems

A number of OO Software Engineering methodologies has been proposed (e.g. Wirfs-Brock, Wilkerson and
Wiener; Rumbaugh; Booch; Coad and Yordon), but most of them lack rigor. This section includes articles
which are aimed to a formal specification of OO systems.

References

(1]

J. Fiadeiro, C. Sernadas, T. Maibaum, and G. Saake. Proof-theoretic semantics of object-oriented speci-
fication constructs. In R. Meersman, W. Kent, and S. Khosla, editors, Object-Oriented Databases: Anal-
ysis, Design and Construction. Fourth IFIP TC2 WG2.6 Working Conference on Database Semantics
(DS-4), pages 243-284, Windermere, UK, 1990. North-Holland.

H. B. M. Jonkers. Introduction to COLD-K. In M. Wirsing and J. A. Bergstra, editors, Algebraic
Methods: Theory, Tools and Applications, number 349 in LNCS, pages 139-206. Springer-Verlag, 1989.

H. B. M. Jonkers. Inheritance in COLD. In J. A. Bergstra and L. M. G. Feijs, editors, Algebraic Methods
II: Theory, Tools and Applications, number 490 in LNCS, pages 277-301. Springer-Verlag, 1991.

R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented specification of information
systems: The TROLL language. Technical Report Informatik-Bericht 91-04, Technical University Braun-
schweig, Germany, 1991.

G. Saake and R. Jungclaus. Specification of database applicationsin the TROLL language. In International
Workshop on Specification of Database Systems, pages 228-245, Glasgow, UK, July 1991.

G. Saake, R. Jungclaus, and H.-D. Ehrich. Object-oriented specification and stepwise refinement. In
J. de Meer, V. Heymer, and R. Roth, editors, International IFIP Workshop on Open Distributed Pro-
cessing, volume 1 of IFIP Transactions C: Communication Systems, pages 99-121, Berlin, Germany, Oct.

1991. North-Holland.

A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-oriented specification of databases: An algebraic
approach. In Thirteenth International Conference on Very Large Databases (VLDB’87), pages 107-116,
Brighton, UK, 1987.

17

[8] F. J. van der Linden. Object-oriented specification in COLD. Technical Report RWR-508-re-92007,
Phillips Research Labs, Eindhoven, Netherlands, Sept. 1992. f1linden@prl.phillips.com.

[9] F. J. van der Linden. Formal methods: From object-based to object-oriented. Technical Report RWR-
508-re-93004, Phillips Research Labs, Eindhoven, Netherlands, Jan. 1993. flinden@prl.phillips.com.

7 Connections to Concurrent Logic Programming and Actors

Concurrent LP is intimately connected to OOP+LP, I believe, because of a reason more pragmatic then
causal: when one seeks to write really large programs in LP, one has to consider both concurrency (in order
to achieve speed) and object orientation (in order to cope with the complexity of the application). On the
other hand, because objects are inherently distributed, it is natural to describe distributed systems in terms
of objects/actors. However OOP+LP has importance in itself: it can be applied very profitably in sequential
programming as well.

This section contains articles both theoretical and dealing with programming languages. There is a lot
of articles on Concurrent LP in the most current literature which I have omitted.

A lot of work in this direction has been done in Japan under the auspices of the Fifth Generation
Computer Systems Project [1, 2, 6, 8, 9, 10, 16, 17, 18, 21, 22]. Another author to be mentioned here is
Kahn.

References

[1] T. Chikayama. ESP-Extended Self-contained PROLOG—as a preliminary kernel language of fifth gener-
ation computers. New Generation Computing, 1:11-24, 1983.

[2] T. Chikayama. Unique features of ESP. In International Conference on Fifth Generation Compuler
Systems, pages 292-298, Tokyo, Nov. 1984.

[3] A. Davison. PoLKA: a PARLOG object-oriented language. Technical report, DOC, Imperial College,
London, 1988.

[4] A. Davison. From PARLOG to POLKA in two easy steps. In J. Maluszyriski and M. Wirsing, editors,
Third International Symposium on Programming Language Implementation and Logic Programming,
PLILP’91, number 528 in LNCS, pages 171-182. Springer-Verlag, 1991.

The parallel LP language PARLOG is enhanced by some basic OO concepts (encapsulation, data hiding, message
passing) to form PARLOGH+. Adding multiple inheritance and self-communication renders POLKA.

[5] A. Eliens. Extending PROLOG to a parallel object-oriented language. In IFIP WG 10.3 Working
Conference, pages 159-170, Lyon, France, Dec. 1989.

[6] K. Fukunaga and S. Hirose. An experience with a PROLOG-based object-oriented language. In OOP-
SLA’86, Portland, OR, Sept. 1986.

[7] T. Hartmann and R. Jungclaus. Abstract description of distributed object systems. In M. Tokoro,
O. Nierstrasz, , and P. Wegner, editors, ECOOP’91 Workshop on Object-Based Concurrent Computing,
number 612 in LNCS, pages 227-244, Geneva, Switzerland, 1991. Springer-Verlag.

[8] Y. Ishikawa and M. Tokoro. Concurrent object-oriented knowledge representation language ORI-
ENT84 /K: Tts features and implementation. In OOPSLA 86, Portland, OR, Sept. 1986.

[9] Y. Ishikawa and M. Tokoro. ORIENT84 /I: A language with multiple paradigms in the object framework.
In Nineteenth Annual Hawaw International Conference on System Sciences, volume II: Software Track,
Honolulu, HI, Jan. 1986.

18

[10]

[13]

[14]

[15]

R. Iwanaga and O. Nakazawa. Development of the object-oriented logic programming language CESP.
Oki Technical Review, 58(142):39-44, Nov. 1991.
CoMMON ESP brings OO to LP. Comes with an adaptible environment.

K. M. Kahn. VuLcaNn: Logical concurrent objects. In E. S. Shapiro, editor, Concurrent PROLOG:
Collected Papers, volume 2, pages 274-303. MIT Press, 1986.

K. M. Kahn. Objects—a fresh look. In S. Cook, editor, European Conference on Object-Oriented
Programming (ECOOP’89), pages 207-223, Nothingham, UK, July 1989.

Objects are considered as perpetual recursive predicates which consume mesage streams.

K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Objects in concurrent logic programming
languages. In OOPSLA’86, Portland, OR,, Sept. 1986.

K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. VULCAN: Logical concurrent objects. In
B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming, pages 75112,
Cambridge, MA, 1987. MIT Press.

P. Mello. Concurrent objects in a logic programming framework. In ACM SIGPLAN Workshop on
Object-Based Concurrent Programming, San Diego, CA, Sept. 1988. (SIGPLAN Notices 24(4):37-39,
Apr. 1989)

Some papers discuss and point out the synergetic advantages of combining logic and object-based programming.
This work is mainly focussed on outlining those advantages with particular reference to concurrency. At the
state of the art the most interesting, complete proposals on this topic that deal with concurrency are built on
the top of the CONCURRENT-PROLOG logic programming language (CP), which is intrinsically parallel and not
compatible with the sequential model of PROLOG. An alternative approach could be to directly extend ProLOG,
the most widely used logic programming language, in order to introduce in it concepts that are typical of parallel
and distributed object-oriented systems without losing the advantages of a declarative language. 14 Refs.

H. Miyoshi and K. Furukawa. Object-oriented parser in the logic programming language ESP. In
Natural Language Understanding and Logic Programming, First International Workshop, pages 107—
119, Rennes, France, Sept. 1984. North-Holland.

In this paper we propose an object-oriented parsing mechanism for logic programming language ESP. In this
object-oriented parser, each program component is abstracted as a class, and access between the two classes
is performed by a message-passing mechanism. Since grammatical categories are also abstracted as classes, the
intrinsic grammatical features which are implemented as predicate arguments in DCG, are described as instances
of category classes. This helps to simplify Horn clause grammar rule description. Being implemented in the logic
programming language ESP, the fundamental mechanism of DCG is also applicable to our parser. 16 refs.

T. Mori and R. Iwanaga. The development of a programming environment for an object-oriented logic
programmming language — ESP. Oki Technical Review, 57(137):53-58, May 1991.

Discusses an environment for the language ESP on machine PSI (Personal Sequential Inference under SIMPOS
(Sequential Inference Machine Program and Operating System.

M. Ohki, A. Takeuchi, and K. Furukawa. An object-oriented programming language based on the
parallel logic programming language KL1. In J.-L. Lassez, editor, Fourth International Conference on
Logic Programming, MIT Press Series in Logic Programming, pages 894-909, 1987.

E. Shapiro and A. Takeuchi. Object-oriented programming in CONCURRENT PROLOG. New Generation
Computing, 1:25-48, 1983.

J. Vaucher; G. Lapalme, and J. Malenfant. SCOOP: Structured Concurrent Object-Oriented PROLOG.
In Furopean Conference on Object-Oriented Programming (ECOOP’88), number 322 in LNCS, pages
191-211. Springer-Verlag, 1988.

Object state change is modeled by non-logical means: assert/retract predicates to modify the logic program.

19

[21] K. Yoshida and T. Chikayama. A’UM = stream + object + relation. In OOPSLA’89, New Orleans,
LA, 1989. (SIGPLAN Notices, 24(10):55-58, Oct. 1989).

[22] K. Yoshida and T. Chikayama. A’UM-—a stream-based concurrent object language. New Generation
Computing, 7:127-157, 1990.

8 Connections to Constraint Logic Programming

Since the definition of the Constraint Logic Programming (CLP) Scheme by Jaffar and Lassez CLP has
underwent a very fast development. It may be interesting to note that the common area between Concurrent
LP and Constraint LP has already been “institutionalized”: Concurrent Constraint Programming.

References

[1] W. Havens, S. Sidebottom, G. Sidebottom, J. Jones, and R. Ovans. ECHIDNA: a constraint logic pro-
gramming shell. In Twelfth Pacific Rem International Conference on Artificial Intelligence, Seoul, Corea,
1992.

Integrates object-oriented schema Knowledge Representation, Constraint Logic Programming on reals, intelli-
gent backtracking via justification-type reason maintenance. Objects are persistent predicate schemata. Message

passing is done through unification.

[2] M. van Biema, G. Q. Maguire, and S. Stolfo. The constraint-based paradigm: Integrating object-
oriented and rule-based programming. In Twenty-Third Annual Hawaur International Conference on
System Sciences, volume II: Software Track, pages 358-366, Kailua-Kona, HI, Jan. 1990.

[3] S. Watari, Y. Honda, and M. Tokoro. MORPHE: A constraint-based object-oriented language supporting
situated knowledge. In International Conference on Fifth Generation Computer Systems, pages 1044—
1051, ICOT, Japan, 1992.

9 Deductive Object-Oriented Databases

This area is relatively young: the first conference on it was held in 1988 [14]. Tt is highly correlated to
OOP+LP because these databases have to have some database programming language, right? But once
again, OOP+LP is a self-important area which may have quite general application.

References

[1] S. Abiteboul. Towards a deductive onbject-oriented database language. Data and Knowledge Engineer-
ing, 5(4):263-289, 1990.
The author describes a logic-based language for databases with sets, tuples, lists, object identity and structural
inheritance. Methods can be overloaded/supplied externally.

[2] A. M. Alashqur, S. Y. W. Su, and H. Lam. Rule-based language for deductive object-oriented databases.
In Sizth International Conference on Data Engineering, pages 5867, Los Angeles, CA, Feb. 1990.
A deductive rule-based language for object-oriented databases is presented. A deductive rule in this language
derives new patterns of associations among objects of some selected classes if these objects fall in certain ’base’
or other derived patterns. The patterns of object associations derived by a rule are held in a subdatabase whose
intension consists of some selected classes and their associations. In other words, the structure of a derived
subdatabase is represented using the structural constructs provided by the object-oriented data model and
hence can be uniformly operated on by other rules to further derive new subdatabases. Therefore, the world of
subdatabases is closed under this rule-based language. 23 Refs.

20

[3]

[10]

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-oriented data mod-
eling with a rule-based programming paradigm. In 71990 ACM SIGMOD International Conference on
Management of Data, Atlantic City, NJ, May 1990. (SIGMOD Record 19(2):225-236, Feb. 1990).

Y. Caseau. A deductive object-oriented language. In Annals of Mathematics and Artificial Intelligence,
Feb. 1991. Special issue on Deductive Databases.

W. Chen, M. Kifer, and D. S. Warren. HiLoa as a platform for database languages (or why predicate
calculus is not enough). In R. Hull, R. Morrison, and D. Stemple, editors, Second International Workshop
on Database Programmaing Languages, pages 315-329 or 121-1357, Glenden Beach, OR, June 1989.
Morgan-Kaufmann.

A. El Habbash, J. Grimson, and C. Horn. Towards an efficient management of objects in a distributed
environment. In Second International Symposium on Databases in Parallel and Distributed Systems,
pages 181-190, Dublin, Ireland, 1990.

A prototype of an object-oriented system implemented in C-PROLOG is described. Its main objective is to
demonstrate system features that would support efficient management of objects and object-oriented databases
in a persistent and distributed environment. Mechanisms at the low level of the system were considered to support
object distribution, mobility control, and configuration management in a simple and uniform way. Objects exist
in clusters, which are transparent to the applications. The prototype is a framework for a self-organizing object-
oriented distributed system. 23 Refs.

M. Fornarino, A.-M. Pinna, and B. Trousse. An original object-oriented approach for relation manage-
ment. In J. P. Martinsand and E. M. Morgado, editors, FPIA ’89: Fourth Portuguese Conference on
Artificial Intelligence, number 390 in LNCS, pages 13-26, Lisbon, Portugal, Sept. 1989. Springer-Verlag.

G. Gardarin. New approaches to advanced database applications. In First Furopean Conference on
Information Technology for Organizational Systems, page 843, Athens, Greece, May 1988.

J. Grant and T. K. Sellis. Extended database logic. complex objects and deduction. Information
Sciences, 52(1):85-110, Oct. 1990.

Database logic was proposed in the late 1970s as a generalization of first-order logic in order to deal in a uniform
manner with relational, hierarchic, and network databases. At about the same time, the study of deductive
(relational) databases has become important, primarily as a vehicle for the development of expert database
systems. Also, PROLOG, the main logic-programming language, has become prominent for many applications
in artificial intelligence, and its connections with deductive databases have been investigated. Although the
relational model provides a suitable framework for traditional, essential data-processing applications, several
researchers have found the need for complex objects in newer applications, such as engineering databases. In
this paper we show how database logic can be extended in two directions: (1) to include complex objects, and (2)
to provide deductive capabilities for hierarchic and network databases. Thus, extended database logic provides
a logical formalism as the foundation for the study of complex objects. (Author abstract) 18 Refs.

P. M. D. Gray and G. J. L. Kemp. OODB with entity-based persistence. In Colloquium on Very Large
Knowledge-Based Systems, volume 96, page 4, Stevenage, England, June 1990. TEE, Michael Faraday
House.

At Aberdeen we have built an object-oriented database (P/FDM) as a natural extension of Shipman’s Functional
Data Model (FDM) which is itself founded on entity-relationship concepts. We are using this to store 50 Mb
of protein structure data, including the coordinates of every atom in over 80 proteins. The database is mainly
used to search for fragments of protein backbone that are of interest, either because of their shape, or because of
their relationship to other substructures (helices, sheets, loops). It also has a completely general query language
(Daplex), which is founded on set- abstraction, list comprehensions and functions. It can call out to functions
which may do arbitrary computations, combined with database search and updates. Most of the database system
is written in compiled PROLOG; this calls to C routines which access UNIX file structures. The DAPLEX language
is compiled into PROLOG, and one can also write complex searches directly in PROLOG. 7 Refs.

21

[11]

[19]

[20]

S. Greco and P. Rullo. CoMPLEX-PROLOG: A logic database language for handling complex objects.
Information Systems, 14(1):79-87, 1989.

The logic language paradigm represents a natural extension of relational databases. However, one of its limita-
tions 1s the lack of suitable data abstraction mechanisms for modeling complex objects. This paper describes
COMPLEX-PROLOG, a logic database language that provides facilities for data abstraction, notably, the notions
of object identity, class and inheritance. This language was designed as an attempt to integrate concepts from
logic programming and semantic data models. A formal definition of COMPLEX-PROLOG, interspersed with a
number of examples, is given. The paper concludes with a description of its implementation. (Author abstract)
24 Refs.

S. Greco and P. Rulo. COMPLEX: An object-oriented logic programming system. [EEE Transactions
on Knowledge and Data Engineering, (4):344-359, Aug. 1992.
The programming language of the system is COMPLEX-DATALOG.

P. Kanellakis and S. Abiteboul. A logical database query language with object identity and strong
typing. In G. Levi and M. Martelli, editors, Sizth International Conference on Logic Programming,
pages 675-692. The MIT Press, 1989.

W. Kim, J.-M. Nickolas, and S. Nishio, editors. First International Conference on Deductive and Object-
Oriented Databases (DOOD’89). North-Holland, 1990. Also in Data and Knowledge Engineering 5(4),
Oct. 1990.

M. Kramer, G. Lausen, and G. Saake. Updates in a rule-based language for objects. In L.-Y. Yuan,
editor, 18th International Conference on Very Large Databases (VLDB’92), pages 251-262, Vancouver,
Canada, 1992.

S. Nurcan and J. Kouloumajian. Structured data in structured logic programming environemnts. In
International Conference on Databases, Parallel Architectures and their Applications (PARBASE’90),
page 547, Miami Beach, FL, Mar. 1990.

C. Quiming. A deductive database approach for complex objects. Journal of Computing Science

Technology (China), 5(3):225-235, July 1990.

C. V. Ramamoorthy and P. C. Sheu. Logic-oriented object bases. In Third International Conference
on Data Engineering, pages 218-225, Los Angeles, CA, Feb. 1987.

The authors propose the framework of logic-oriented object bases, i.e., databases that are constructed based
on object model and augmented by mathematical logic. Adopting logic as a formal means for knowledge repre-
sentation, they have developed both algorithmic and knowledge-based approaches to relate objects, to evaluate
declarative queries that involve high-level concepts, and to schedule declarative update requests such that changes
to objects can be made consistently. 25 refs.

G. Saake. Descriptive specification of database object behaviour. Data & Knowledge Engineering,
6(1):47-73, Jan. 1991.

Traditional database design methodologies are not appropriate for the specific requirements of object-oriented
database systems and new database application areas. Apart from semantic complications arising from object-
oriented database structures with complex objects, arbitrary data types as attribute domains, or generalization
hierarchies, specification and semantics of dynamic database behaviour has to be of main interest for typical
object-oriented applications, too. We propose the use of a temporal logic as a specification language for dynamic
object behaviour and point out the formal semantics of such database dynamics specifications. A layered con-
ceptual database design methodology is presented together with a discussion on design support techniques for
behaviour specifications. Finally, implementation aspects are treated. (Author abstract) 48 Refs.

P. C.-Y. Sheu and R. L. Kashyap. Query optimization in distributed logic-oriented object bases. Journal
of Parallel and Distributed Computing, 8(1):60-71, Jan. 1990.

22

We define a logic-oriented object base to be a deductive database based on an object data model. Like con-
ventional database, a logic-oriented object base system can be constructed on top of a computer network such
that distribution of logical and physical components of the system is kept hidden from the users. A distributed
logic-oriented object base differs from a distributed relational database in many aspects. For instance, objects
are organized hierarchically and objects are retrieved through customized methods. In this paper we investigate
the problem of query optimization in distributed logic-oriented object bases. (Author abstract) 25 Refs.

10 Applications to Knowledge Representation

This section introduces some of the application areas which would benefit from a good OOP+LP merger
(actually most of the works mentioned here are not mere uses of the technology, but develop quite good and
original ideas for a merger). Here are only applications dealing with representing complicately interconnected
complex entities (typically for knowledge-based systems). Other applications are enlisted in the next section.
Note that it was not possible to divide articles very well between this and the previous section. Some of the
presented works may be applied for more general software engineering.

References

(1]

[2]

G. Antoniou. Logical approaches to structured knowledge bases. In B. du Boulay and V. Sgurev, editors,
Artificial Intelligence V: Methodology, Systems, Applications (AIMSA’92), pages 47-56. Elsevier Science
Publishers, 1992.

M. Balaban. The Generalised-Concept formalism — an object-oriented, logical framework for knowledge
representation. In Second International Sympositum on Methodologies for Intelligent Systems, Colloquia,

pages 179-189, 1987.

M. Balaban and S. Strack. LOGSTER — a relational object-oriented system for knowledge representation.
Technical Report TR 88-7, SUNY at Albany, 1987.

A logic kernel wrapped in an object-oriented interface. Uses the Generalised-Concept formalism [2].

R. Brachman. Knowledge representation theory meets reality: some brief lessons from the Crassic.
In International Conference on Fifth Generation Computer Systems, pages 1063-1065, ICOT, Japan,
1992.

R. Brachman, A. Borgida, D. McGuinness, P. Patel-Schneider, and L. Resnick. The Crassic knowl-
edge representation system of KL-ONE: The next generation. In International Conference on Fifth
Generation Computer Systems, pages 1036-1043, ICOT, Japan, 1992.

F.-a. Chen and Y.-f. Zhu. POKRS: A PrROLOG-based object-oriented knowledge representation sys-
tem. In 1988 IFEE International Conference on Systems, Man, and Cybernetics, pages 285-288, Bei-
jing/Shenyang, China, Aug. 1988.

The authors introduce the design and implementation of a PROLOG-based object-oriented knowledge repre-
sentation system (POKRS), which is a developing environment of knowledge systems. The system includes a
logic-based object-oriented knowledge representation language based on the combination of object-oriented pro-
gramming and logic programming. The language has both the capability of knowledge-base organization from
object-oriented programming and expressive power from logic programming. The authors describe the language
implementing method, an algorithm of message receiving and method searching in the inference mechanism, and
the functions of knowledge-base inquiry and maintenance. The system also provides a structural editor as knowl-
edge input tool. POKRS has been implemented in PROLOG-KABA language on an IBM-PC microcomputer.
16 Refs.

23

[7]

(8]

[15]

I. Dimitrov. Systemic programming: a new paradigm for knowledge representation. In Trappl, editor,
Cybernetics and Systems. World Scientific, 1990.

I. Dimitrov. A systems-based fraamework for knowledge representation. In Artificial Intelligence IV:
Methodology, Systems, Applications (AIMSA’90). Elsevier Science publishers, 1990.

An approach borrowed from systems science which is orthogonal to OOP. The KB is represented by means of
a set of interconnected subsystems and specification how to combine the methods of the subsystems in order
to get the system method. Combinations include ones from CLOS: prologues, main part, epilogues, “around”
methods and means to notify one’s parents/children in the part-of hierarchy. Particularly good for modeling
mechanical systems.

I. Dimitrov. Systems-based knowledge representation: Relations and methods. In B. du Boulay and
V. Sgurev, editors, Artificial Intelligence V: Methodology, Systems, Applications (AIMSA’92), pages
203-212. Elsevier Science Publishers, 1992.

A. Doman. OBJECT-PROLOG: Dynamic object-oriented representation of knowledge. In T. Henson,
editor, SCS Multiconference on Artificial Intelligence and Simulation: The Diversity of Applications,
pages 83-88, San Diego, CA, Feb. 1988.

G. Q. Huang and J. A. Brandon. AGENTS: Object-oriented PROLOG system for cooperating knowledge-
based systems. Knowledge-Based Systems, 5(2):125-136, June 1992.

AGENTS is a multiparadigm language to express the collaborations among cooperating expert systems in an OO
language and the deductions inside each agent in a LP language.

M. S. Ibrahim and S. W. Woyak. An object-oriented environment for multiple artificial intelligence
paradigms. In Second International IEEE Conference on Tools for Al pages 77-83, Herndon, VA, Nov.
1990.

EDS/OWL integrates uniformly access-oriented, rule-based and LP paradigms in an extensible OO environment.

H. Ito and H. Ueno. ZERO: Frame + PROLOG. In Fourth Conference on Logic Programming, number
221 in LNCS, pages 78-82, Tokyo, Japan, 1985. Springer-Verlag.

Logic programs stuffed in the slots of frames (though there is also an external general KB of clauses).

V. Karakostas and P. Loucopoulos. Verification of conceptual schemata based on hybrid object-oriented
and logic paradigm. Information and Software Technology, 30(10):587-594, Dec. 1988.

Contemporary conceptual modeling languages are concerned with the represenational adequacy of knowledge
about a universe of discourse and with the efficient organization of this knowledge in structures that help
overcome the problems of size and complexity in the modeled reality. In the paper it is argued that a conceptual
modeling language should also facilitate the verification of captured requirements by exercising the conceptual
schemata derived from the use of such a language. A conceptual modeling language is presented that is based on
a hybrid representation scheme that makes use of object-oriented and logic approaches, and it is shown how this
language can be used to verify requirements during the development of information systems. (Author abstract)

27 Refs.

K. Lee and S. Lee. Object-oriented approach to data/knowledge modeling based on logic. In Sizth
International Conference on Data Engineering, pages 289-294, Los Angeles, CA, Feb. 1990.

The object-oriented data model has gained popularity in developing database systems for new applications which
include AI, CAD, and OIS. In modeling such applications, it is necessary to capture not only data semantics
but also knowledge semantics, such as constraints and deductive rules. The authors describe an approach to
data/knowledge modeling which combines various modeling features of the object-oriented data model with
deductive capabilities of the deductive database system. 22 Refs.

F. Mizoguchi, H. Ohwada, and Y. Katayama. LOOKS: Knowledge representation system for designing
expert systems in a logic programming framework. In International Conference on Fifth Generation
Computer Systems, ICOT, Japan, Nov. 1984.

24

[17]

[18]

[19]

11

M. Tokoro and Y. Ishikawa. An object-oriented approach to knowledge systems. In International
Conference on Fifth Generation Computer Systems, pages 623-631, ICOT, Japan, 1984.

The architecture has three parts: behavioral (implemented by logic), Knowledge Base, and monitoring.

A. Turnheim, D. Raveh, and I. Bogomolni. SOLOG-system object oriented logic development. In 71990
IEEE International Conference on Computer Systems and Software Engineering - COMPEURO 90,
pages 556-557, Tel-Aviv, Israel, May 1990.

A brief overview is presented of an intelligent tool, SOLOG, which addresses the problem of system logic
development. This tool is part of an environment which is used to support rapid prototyping and development
of complex systems. A case study is presented of logic development with SOLOG. 3 Refs.

C. Welsch and G. Barth. Reasoning objects with dynamic knowledge bases. In J. P. Martinsand and
E. M. Morgado, editors, EPIA '89: Fourth Portuguese Conference on Artificial Intelligence, number
390 in LNCS, pages 257-268, Lisbon, Portugal, Sept. 1989. Springer-Verlag.

Object-oriented programming has proven its appropriateness for simulating real worlds, in particular for imitat-
ing human societies and their ability to solve problems. Object-oriented software is easy to modify and extend,
a property of great importance for Al applications. Logic programming on the other hand stands out for its
declarative specification language, built-in inference capabilities and clear theory. A well known feature of logic
programming 1is the separation of knowledge representation and inference method.

We present a framework which amalgamates object-oriented and logic programming. It combines the object-
oriented view with the logic formalism. Objects are considered as reasoning entities whose knowledge bases may
change over time. They communicate via messages in order to ask for or to provide information. In response to
new information, an object may have to update its knowledge. Operationally, reactions to messages are infer-
ence processes based on PROLOG’s inference by resolution mechanism. Great importance is devoted to simple
and intelligible semantics of knowledge base alterations being the only way to change states. To this end, an
object’s knowledge base is divided into three parts: assumptions, reflections and reactions, each consisting of
Horn clauses. Only assumptions are allowed to be altered. Knowledge can not be modified while an inference

process is going on, resulting in easy-to-understand and easy-to-formalize semantics.

Other Applications

The variety of applications listed in this section suggests that OOP+LP will be useful in numerous domains.

References

(1]

J.-P. A. Barthes and Y. Le Noan. Command and control system based on a multi-media object-oriented
data base and a logic programming language. In Annual AI Systems in Government Conference, pages
126-132, Washington, DC, Mar. 1989.

The authors present two systems, VORAS and G-BASE, for storing a large number of objects in a Lisp environ-
ment, saving them permanently in secondary storage, and providing shared access. Objects use a simple, flexible
and powerful model of recursive frames called the property driven model. A number of mechanisms have been im-
plemented such as browsing, complex queries, object-oriented programming, and deduction, leading to a desired
result. In utilizing G-BASE, the French Navy has discovered two unique advantages of the product: 1) G-BASE
manages all information available and presents it in an intelligent way; and 2) the expert system developer can
use the data base objects and relationships without having to build and manage a data base. 35 refs.

E. Corsetti, A. Montanari, and E. Ratto. A methodology for an incremental, logical specification of
real-time systems. In FUROMICRO ’90 Workshop on Real Time, pages 87-94, Horsholm, Denmark,
June 1990.

A methodology for an incremental, logical specification of real-time systems which is based on an object-oriented
extension of a logical specification formalism is presented. Such an object-oriented framework makes available

25

primitives for identifying, partitioning, and structuring the elements of a specification. In such a way, it supports
a twofold modality of dealing with abstraction, i.e. specialization and decomposition, that provides a guideline
for specifications development. In particular, it provides the specifier with the ability to deal with different time
granularities within a single specification. That is, it allows the specifier to describe the behavior and the properties
of a system and its environment with respect to different time scales, and to switch among them in a suitable
way. It also allows an extension of temporal verification and validation of specifications taking into account the
incremental development and the resulting layered structure of specifications. 25 Refs.

G. Fleischanderl, G. Friedrich, W. Neijdl, and J. Retti. Integrating logic, object-oriented and procedural
paradigms in a fault diagnosis and monitoring system. In Second International Conference on Industrial
and Engineering Applications of Artificial Intelligence and Frpert Systems (IFEA/AIES’89), June 1989.

P. Loucopoulos and V. Karakostas. Modelling and validating office information systems: an object and
logic oriented approach. Software Engineering Journal, 4(2):87-94, Mar. 1989.

Developing information systems for the office environment of today requires powerful representation formalisms
and techniques capable of modeling all office elements. Furthermore, these formalisms should provide appropriate
facilities for the validation of a conceptual schema. In the paper, it is argued that an office modeling approach
should provide semantic account for the various aspects of the schema, as well as facilities for simulating its
behavior. A conceptual modeling language is presented that combines the object oriented and logic programming
paradigms, and it is demonstrated how this language can be used to validate the conceptual design of an office
information system. (Author abstract) 24 Refs.

B. Muller. Enhancing software engineering capabilities of PROLOGDby object-oriented concepts. In F. Belli
and F. J. Radermacher, editors, 5th International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems - IEA/AIE 92, pages 127-138, Paderborn, Germany, June
1992.

L. F. Pau. Context knowledge and search control issues in object-oriented prolog-based image under-
standing. Pattern Recognition Letters, 13(4):279-290, 1992.

A. S. Watson and S. H. Chan. PRrRoLOG-based object oriented engineering DBMS. Computers and
Structures, 40(1):11-21, 1991.

In this paper we present the primary concepts of PBASE, a prototype object oriented database system. PBASE
is intended to support the needs of engineering applications with specific reference to structural engineering.
To address the engineering requirements the object oriented data model used in PBASE incorporates several
enhancements, including Schema Evolution, Composite Objects, Declarative Methods and Version Management.
Schema evolution allows dynamic changes to the class definitions and the class lattice. Composite objects support
the is-part-of relationship between assemblies and components. Declarative methods introduce semantics into
objects while version management supports the tracking of objects’ versions and alternatives as they evolve during
the design process. (Author abstract) 44 Refs (First International Conference on the Application of Artificial
Intelligence Techniques to Civil and Structural Engineering - CIVIL-COMP’89, London, England).

K. Wiederanders. CSO-ProroG: A language for knowledge-based object-oriented programming, dis-
tributed execution and simulation. In Furopean Simulation Multiconference, pages 747-752, Nuremberg,
Germany, June 1990.

This language is developed at Multilogic Computing Ltd. ; Budapest, Hungary. It integrates combined knowledge
(functions, clauses), object-orientation (objects, classes), parallel execution (processes) and simulation (model
time).

12 Acknowledgements and Notes

Ralf Jungclaus and Christo Dichev have kindly sent me some references from their own bibliographic
databases.

26

A more thorough survey on Logics for LP will be available from menaik.cs.ualberta.ca: pub/oolog
in August 1993.

Vote for the creation of the Usenet newsgroup comp.object.logic!

27

