
A (Not Very Much) Annotated Bibliography onIntegrating Object-Oriented and Logic ProgrammingAvailable from menaik.cs.ualberta.ca: pub/oologCompiled by: Vladimir Alexievvladimir@cs.ualberta.caMarch 27, 1993Contents1 Introduction 12 Logics to Model Object-Oriented Notions 23 Logics for Inheritance Systems;Modules (Worlds) for Logic Programming 84 Languages Integrating OOP and LP 105 Implementation-Oriented Developments 156 Formal Speci�cation of Object-Oriented Systems 177 Connections to Concurrent Logic Programming and Actors 188 Connections to Constraint Logic Programming 209 Deductive Object-Oriented Databases 2010 Applications to Knowledge Representation 2311 Other Applications 2512 Acknowledgements and Notes 261 IntroductionObject-oriented computing emerged in the last decade as an e�ective means to deal with the \softwarecrisis" by making the software engineering an easier process. Logic programming on the other hand can beviewed as an attempt to put (part of) mathematical logic in service to programming. LP is widely used forapplications where it is not quite clear what direction the computation will take (what will be the inputsand what the outputs) but the relations among the concepts in the domain are clear This is the case forsome AI tasks, prototypical programming, etc. LP, however, largely misses the needed software engineeringdevices (modules, information hiding, reuse etc.) to make it a viable choice for large programs.1

It would be very useful to integrate OOP and LP in a seamless and natural way in order to exploit thesynergism between the two. An important issue in such an integration would be to preserve the clarity of thetwo paradigms and merge them organically so that not to get an ad-hoc conglomerate of unrelated conceptsala PL/1. The two paradigms are equally basic and self-important so it would not be appropriate to makeone of them the master and the other the slave of such a merger.A preliminary literature survey of the area shows that right now OOP+LP is a hot topic. Without muche�ort it was possible to compile a bibliography of about 180 items; there are at least 50 di�erent mergersand/or languages proposed. Some of them are approaches one would like to avoid: implementing OOP inLP or LP in OOP (often very ine�ciently), binding the OOP+LP merger to Constraint LP, Concurrent LPor Deductive and OO Databases (whereas the merger has its own importance) etc. But there are also basicideas which seem very attractive: represent message passing by uni�cation, methods by the set of clausescomprising a predicate, inheritance by extending a predicate with clauses from another logic theory (world,module) etc.The main obstacle to a merger seems to be that the LP paradigm does not support the notion of mutablestate: a logic variable is either free or bound once and for all (logic possesses the property of referentialtransparency). When represented in LP, most often state is carried by predicate's parameters. The task ofde�ning formally what an object is (devising logics to model OO features) seems most important at presentbecause there is no widely accepted formalization yet and this hinders the smooth implantation of OOP intoLP.I have used the following sources to compile this bibliography: Computer and Control Abstracts (every-thing from 1989 to 1992), ACM Guide to Computing Literature (1991 and 1992; this is hardly usable as areference), online databases COMPENDEX (1987-1992) and INSPEC (1988(?)-1992; this is most compre-hensive but I had hardly enough access to it). I have also searched Index to Scienti�c Reviews and got sometitles but haven't included them yet. And of course, I have scanned the reference lists of the articles I haveread.I have tried to outline the boundaries of subareas in the OOP+LP area and to �gure out what is alreadydone and what is still to be done. However the resulting division is imperfect for a number of reasons:� it is highly subjective;� sometimes a paper falls equally well under two or more divisions;� papers which I have not read and which have undescriptive title inevitably are classi�ed wrongly;� I have tried not to split related work by the same author or team: all related articles are put in thesection which best �ts the most important of them.As the title says, this is a not-very-much annotated biblography. It is not completed yet both in thesense that there are titles I would like to include and, more importantly, I have read only about 30 or 40 ofthe articles. My comments are rarely longer than �ve lines; the ten-line abstracts which you can see withsome of the articles have come form COMPENDEX (and are copied without permission, I guess). Generallyall annotations which do not end on \n Refs" are written by me, but about 10% of them (the shortest ones)are just \abstracted abstracts" from CCA and have little value. Now you may think that my annotationsare very short and make little sense, but this is because the life is short; and I made it for myself, not foryou :-). However corrections, additions and suggestions for reorganization are most welcome at the addressabove. I am not quali�ed to be and I won't serve as a referee of all these articles, only with a joint e�ortthis bibliography could possibly have some value (not that I got a lot of comments yet :-(.2 Logics to Model Object-Oriented NotionsThis is the subtopic I deemmost important at present because we still don't have a clear logical understandingof what an object is (at least I don't; maybe after reading all this I will gain one :-). Object-orientedcomputing enjoys most wide acceptance but no semantics for it does yet.2

It is not necessarily the case that having a good logic of objects will buy us a good merger of logicprogramming with OOP: the particular logic may have little practical value. So having a clear logicalsemantics of OOP is probably not a su�cient condition for a good merger, but de�nitely it is a necessaryone.Logics which deal only with inheritance or modules for LP are in the next section. Here are logics whichaim at an overall treatment of objects and/or which try to model mutable state. Some of the the logicsincluded here should probably go to the section Concurrent LP.A couple of ecclectic remarks about the subarea follow: An early work on OO logic is Maier's O-logic[40, 41]. Later it was extended and re�ned in Kifer's F-logic [31, 33] and Chen and Warren's C-logic [5].Goguen and Meseguer has done a considerable early work falling between this subarea and the onedescribed in the next section [19, 20].Another direction is the application of Linear Logic to the problem: Andreoli and Pareschi's LinearObjects [2, 3, 1, 4, 5].A recent approach by Meyer and Wieringa [45, 53] and by Jungclaus [4, 26] (in
uenced by Ehrich,Fiadeiro, Saake and Sernadas) is to use fully the developments in Abstract Data Types and only add objectidentities and Dynamic Logic (a form of Modal Logic with modalities formed by events: message sends toobjects) to model changing state.Uustalu [51] uses Modal Logic tro model inheritance and regards evolution of state the same as inheritanceof behavior: state is inherited from the previous time instant. This approach is somewhat similar to Pimentel[46].By the way, should we talk about an \Italian school" in this subarea? (Andreoli, Brogi, Lamma, Leonardi,Mello, Pareschi)References[1] J.-M. Andreoli and R. Pareschi. LO and behold! concurrent structured processes. In ECOOP-OOPSLA'90, Ottawa, Ontario, 1990. (SIGPLAN Notices, 25(10):44{56, Oct. 1990).[2] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. In D. H. D.Warren and P. Szeredi, editors, Seventh International Conference on Logic Programming, pages 495{510,Jerusalem, Israel, 1990. The MIT Press.[3] J.-M. Andreoli and R. Pareschi. Logic programming with linear logic. In Extensions of Logic Program-ming, LNAI. Springer-Verlag, 1990.[4] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. NewGeneration Computing, 9(3-4):445{473, 1991.Objects are regarded as proof processes (this is a borrowing from concurrent LP). Object state is modeled bythe arguments occuring during the proof. \Linear" objects mean that there may be more than one literal in theclause head (non-Horn clauses).[5] J.-M. Andreoli and R. Pareschi. Linear objects: A logic framework for open system programming.In A. Voronkov, editor, International Conference on Logic Programming and Automated ReasoningLPAR'92, pages 448{450, St. Petersburg, Russia, July 1992.[6] A. Brogi, E. Lamma, and P. Mello. A general framework for structuring logic programs. Technicalreport, C.N.R. "Progetto Finalizzato Sistemi informatici e Calcolo paralello", 1990.[7] A. Brogi, E. Lamma, and P. Mello. Objects in a logic programming framework. In A. Voronkov, editor,First Russian Conference on Logic Programming, number 592 in LNAI, pages 102{113. Springer-Verlag,1991.Objects are represented by logic theories, inheritance is expresses as metalevel axioms, messages are equated torequests to prove a goal. A clear semantic characterization is provided.3

[8] A. Brogi and F. Turini. Metalogic for knowledge representation. In J. A. Allen, R. Fikes, and E. Sande-wall, editors, Principles of Knowledge Representation and Reasoning: Second International Conference,pages 61{69, Cambridge, CA, 1991. Morgan Kaufmann.Metalogic is shown adequate to represent a number of KR methods and inference modes: structuring of logictheories in terms of hypothetical reasoning and contextual LP; object-orientation of theories by means of hear-archical reasoning/inheritance and encapsulation of theories as objects.[9] Q. Chen. High-order logic programming framework for complex objects reasoning. In Thirteenth An-nual International Computer Software and Applications Conference - COMPSAC'89, pages 711{718,Orlando, FL, 1989.The theoretical foundations of a strongly typed high-order rule language, HILOG, are developed by introducingappropriate mathematical concepts to reformulate the logic programming (LP) notions. This work is signi�cantfor enhancing the LP capability to support object orientation, Abstract Data Types, and knowledge represen-tation with type hierarchies and for applying LP and deductive database techniques to practical applicationsinvolving complex objects. 16 Refs.[10] W. Chen and D. S. Warren. Objects as intensions (logic programming). In R. A. Kowalski and K. A.Bowen, editors, Fifth International Conference and Symposium on Logic Programming, pages 404{419,Seattle, WA, Aug. 1988.[11] W. Chen and D. S. Warren. C-Logic of complex objects. In Eight ACM SIGACT-SIGMOD-SIGARTSymposium on Principles of Database Systems, pages 369{378, Philadelphia, PA, Mar. 1989.Our objective is to have a logical framework for natural representation and manipulation of complex objects.We start with an analysis of semantic modeling of complex objects, and attempt to understand what are thefundamental aspects which need to be captured. A logic, called C-logic, is then presented which provides directsupport for what we believe to be basic features of complex objects, including object identity, multi-valued labelsand a dynamic notion of types. C-logic has a simple �rst order semantics, but it also allows natural speci�cationof complex objects and gives us a framework for exploring e�cient logic deduction over complex objects. (Authorabstract) 24 Refs.[12] J. W. de Bakker and E. P. de Vink. CCS for OO and LP. In S. Abramsky and T. S. E. Maibaum, edi-tors, International Joint Conference on Theory and Practice of Software Development (TAPSOFT'91),Volume 2: Colloquium on Combining Paradigms for Software Development, number 494 in LNCS, pages1{28, Brighton, UK, Apr. 1991. Springer-Verlag.The title decrypts to: \Comparative Continuation Semantics for Object-Oriented and Logic Programming".[13] H.-D. Ehrich, M. Gogolla, and A. Sernadas. Objects and their speci�cation. In M. Bidoit and C. Choppy,editors, Eigth Workshop on Abstract Data Types, number 655 in LNCS, pages 40{66. Springer-Verlag,1992.[14] H.-D. Ehrich, J. A. Goguen, and A. Sernadas. A categorial theory of objects as observed processes. InJ. W. deBakker, W. P. deRoever, and G. Rozenberg, editors, REX/FOOL Workshop, number 489 inLNCS, pages 203{228, Noordwijkerhood, Netherlands, 1990. Springer-Verlag, 1991.[15] H.-D. Ehrich, G. Saake, and A. Sernadas. Concepts of object-orientation. In R. Studer, editor, SecondWorkshop of \Informationssysteme und K�unstliche Intelligenz: Modellierung", number 322 in IFB,pages 1{19, Ulm, Germany, 1992. Springer-Verlag.[16] J. Fiadeiro and T. Maibaum. Describing, structuring and implementing objects. In J. W. deBakker,W. P. deRoever, and G. Rozenberg, editors, REX/FOOL Workshop, number 489 in LNCS, pages 275{310, Noordwijkerhood, Netherlands, 1990. Springer-Verlag.[17] J. C. Freytag, R. Manthey, and M.Wallace. Mapping object-oriented concepts into relational concepts bymeta-compilation in a logic programming environment. In K. R. Ditrich, editor, Secont International4

Workshop on Advances in Object-Oriented Database Systems, pages 204{208, Ebernburg, Germany,Sept. 1988.[18] H. Gallaire. Merging objects and logic programming: Relational semantics. In AAAI-86: Fifth NationalConference on Arti�cial Intelligence, pages 754{758, Philadelphia, PA, Aug. 1986.[19] J. A. Goguen and J. Meseguer. Equality, types, modules and generics for logic programming. In LogicProgramming: Relations, Functions and Equations. Prentice-Hall, 1986.[20] J. A. Goguen and J. Meseguer. Unifying functional, object-oriented and relational programming withlogical semantics. In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-gramming, pages 417{477, Cambridge, MA, 1987. MIT Press.[21] J. A. Goguen and D. Wolfram. On types and FOOPs. In R. Meersman et al., editors, Object-OrientedDatabases: Analysis, Design and Construction, pages 1{22. North-Holland, 1991.[22] J. Grabowski. Metaprograms for change, assumptions, objects, and inheritance. In A. Pettorossi, editor,Third International Workshop on Meta-Programming in Logic, META-92, pages 336{351, Uppsala,Sweden, June 1992.[23] C. A. Gunter and J. C. Mitchell. Theoretical Aspects of Object-Oriented Programming: Types, Seman-tics, and Language Design. The MIT Press, 1993. To appear.[24] T. Hartmann, R. Jungclaus, and G. Saake. Aggregation in a behavior oriented object model. In O. L.Madsen, editor, European Conference on Object-Oriented Programming (ECOOP'92), number 615 inLNCS, pages 57{77, Utrecht, Netherlands, 1992. Springer-Verlag.[25] Y. J. Hiang. Epistemic logics and epistemic objects. In UK IT 88 Conference Publication, pages 120{123,Swansea, UK, July 1988.[26] R. Jungclaus. Logic-Based Modeling of Dynamic Object Systems. PhD thesis, Technical UniversityBraunschweig, Germany, 1993.[27] R. Jungclaus and G. Saake. Formal speci�cation of object-oriented systems. In S. Abramsky and T. S. E.Maibaum, editors, International Joint Conference on Theory and Practice of Software Development(TAPSOFT'91), Volume 2: Colloquium on Combining Paradigms for Software Development, number494 in LNCS, pages 60{82, Brighton, UK, Apr. 1991. Springer-Verlag.[28] D. Kato, T. Kikuchi, R. Nakajima, J. Saawada, and T. Tsuiki. Modal logic programming. In VDM &Z: Formal Methods in Software Development, pages 29{40, Kiel, Germany, Apr. 1990.Presents several languages based on Modal Logic which is useful not only for temporal reasoning but also forstructuring. Overview of the work done at Kyoto University, Japan. 13 Refs.[29] N. Kesim and M. Sergot. On the evolution of objects in a logic programming framework. In InternationalConference on Fifth Generation Computer Systems, pages 1052{1060, ICOT, Japan, 1992.[30] M. Kifer. A �rst-order formalization of object-oriented languages. Data Engineering, 14(2):13{17, June1991.[31] M. Kifer and G. Lansen. F-logic: A higher order language for reasoning about objects, inheritanceand scheme. In 1989 ACM SIGMOD International Conference on Management of Data, portland, OR,May 1989. (SIGMOD Record 18(2):134{146, Feb. 1990).[32] M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based languages.Technical Report 90/14, SUNY at Stony Brook, Aug. 1990.5

[33] M. Kifer and J. Wu. A logic for object-oriented logic programming (Maier's O-logic revisited). InEight ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pages 379{393,Philadelphia, PA, Mar. 1989.We present a logic for reasoning about complex objects, which is a revised and signi�cantly extended versionof Maier's O-logic. The logic naturally supports complex objects, object identity, deduction is tolerant toinconsistent data, and has many other interesting features. It elegantly combines the object-oriented and value-oriented paradigms and, in particular, contains all of the predicate calculus as a special case. Our treatment ofsets is also noteworthy: it is more general than ELPS and COL, yet it avoids the semantic problems encounteredin LDL. The proposed logic has a sound and complete resolution-based proof procedure. (Author abstract) 45Refs.[34] C. S. Kwok. A survey of structuring mechanisms for logic programs. In International Computer ScienceConference, pages 179{188, Hong Kong, Dec. 1988.Three mechanisms are surveyed: modularization, object-orientation and use of metalanguage. 82 Refs.[35] E. Laenens, D. Sacca, and D. Vermeir. Extending logic programming. In 1990 ACM SIGMOD Interna-tional Conference on Management of Data, Atlantic City, NJ, May 1990. (SIGMOD Record 19(2):184-193, Feb. 1990).[36] E. Laenens and D. Vermeir. A logical basis for object-oriented programming. In J. van Eijck, edi-tor, European Workshop on Logics in Arti�cial Intelligence (JELIA'90), pages 317{332, Amsterdam,Netherlands, Sept. 1990.Describes Ordered Logic (OL) which models object identity, multiple inheritance, defaults. It considers partially-ordered sets of logic theories.[37] L. Leonardi and P. Mello. Combining logic- and object-oriented programming language paradigms.In B. D. Shriver, editor, Twenty-First Annual Hawaii International Conference on System Sciences,volume II: Software Track, pages 376{385, Kailua-Kona, HI, Jan. 1988.The usefulness and synergetic advantages of combining logic- and object-oriented programming in a declarativeframework are explored. Rather than present another speci�c combination of logic and object programming, theauthors discuss di�erent kinds of extensions. 33 refs. (This is a review of the developments in the areauntil 1987).[38] R. Li and A. Sernadas. Reasoning about objects using a tableau method. Journal of Logic Computing,1(5):575{611, Oct. 1991.[39] P. Loucopoulos and R. Zicari, editors. Describing and Structuring Objects for Conceptual SchemaDevelopment, Chichester, UK, 1991. John Wiley & Sons.[40] D. Maier. A logic for objects. Technical Report CS/E-86-012, Oregon Graduate Center, Nov. 1986.[41] D. Maier. A logic for objects. In J. Minker, editor, Workshop on Foundations of Deductive Databasesand Logic Programming, pages 6{26, 1986.[42] P. Mello and A. Natali. Objects as communicatingProlog units. In ECOOP'87: European Conferenceon Object-Oriented Programming, number 276 in LNCS, pages 181{192, Paris, June 1987. Springer-Verlag.[43] J. Meseguer. A logical theory of concurrent objects. In ECOOP/OOPSLA'90, Ottawa, Ontario, 1990.(SIGPLAN Notices, 25(10):101{115, Oct. 1990).[44] J. Meseguer. Multiparadigm logic programming. In G. Levi and H. Kirchner, editors, Third InternationalConference on Algebraic and Logic Programming, number 632 in LNCS, pages 158{200. Springer-Verlag,1992. 6

[45] J.-J. C. Meyer and R. J. Wieringa. Actor-oriented system speci�cation with dynamic logic. In S. Abram-sky and T. S. E. Maibaum, editors, International Joint Conference on Theory and Practice of SoftwareDevelopment (TAPSOFT'91), Volume 2: Colloquium on Combining Paradigms for Software Develop-ment, number 494 in LNCS, pages 337{357, Brighton, UK, Apr. 1991. Springer-Verlag.See also [53].[46] S. G. Pimentel and J. L. Cuadrado. A Horn clause theory of inheritance and temporal reasoning. InJ. P. Martinsand and E. M. Morgado, editors, EPIA '89: Fourth Portuguese Conference on Arti�cialIntelligence, number 390 in LNCS, pages 63{72, Lisbon, Portugal, Sept. 1989. Springer-Verlag.[47] G. Razek. Combining objects and relations. SIGPLAN Notices, 27(12):66{70, Dec. 1992.[48] U. S. Reddy. Objects as closures: Abstract semantics of object-oriented languages. In 1988 ACMConference on Lisp and Functional Programming, pages 289{297, Snowbird, UT, July 1988.A denotational semantics for Smalltalk-80 using continuations to model side e�ects.[49] A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. The basic building blocks of informationsystems. In E. Falkenberg and P. Lindgreen, editors, Information System Concepts: An In-DepthAnalysis, pages 225{246, Namur, Belgium, 1989. North-Holland.[50] B. Stavtrup. A Proposal Regarding Invisible Logic For Object-Oriented Languages. Journal of Object-Oriented Programming, 5(1):63{65, 1992.The author makes a proposal to the ANSI C++ Committee for an extension of the operator-overloading facilitiesof C++ so that whitespace can also be used for this purpose. I was halfway through the article when I askedmyself: \Wait a minute, what month is this issue?". It turned out to be April (now read aloud the �rst lettersof the title). Stavtrup is, of course, a screwed-up variant of Strostrup.[51] T. Uustalu. Combining object-oriented and logic paradigms: A modal logic programming approach.In O. L. Madsen, editor, European Conference on Object-Oriented Programming (ECOOP'92), pages98{113, June 1992.Based on the author's MS Thesis at Tallinn Technical University, Estonia. First a brief account of existingattempts to integrate OOP and LP is given and a categorization is provided. Then the author describes threemodal logics (MU, MU' and MU") which provide for di�erent inheritance modes: overriding/cumulative, syn-tactic/semantic. Objects can provide/receive iheritance selectively for each predicate (method). State change istreated exactly as inheritance: objects inherit their state from the previous time instant in the same way theyinherit (part of) their behavior from their ancestors in the inheritance lattice. Thus a two-dimensional modallogic, 2MU, is proposed.[52] M. Wand. Type inference for record concatenation and multiple inheritance. In Fourth Annual Sympo-sium on Logic in Computer Science, pages 92{97, Asilomar Conference Center, Paci�c Grove, CA, June1989. IEEE Computer Society Press. (An extended version appeared in Information and Computation,93(1):1{15, July 1991).We show that the type inference problem for a lambda calculus with records, including a record concatenationoperator, is decidable. We show that this calculus does not have principal types, but does have �nite completesets of types: that is, for any term M in the calculus, there exists an e�ectively generable �nite set of typeschemes such that every typing for M is an instance of one the schemes in the set.We show how a simple model of object-oriented programming, including hidden instance variables and multipleinheritance, may be coded in this calculus. We conclude that type inference is decidable for object-orientedprograms, even with multiple inheritance and classes as �rst-class values.[53] R. J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel, M. Kifer,and Y. Masunaga, editors, Second International Congress on Deductive and Object-Oriented Databases(DOOD'91), number 566 in LNCS, pages 431{452, Munich, Germany, Dec. 1991. Springer-Verlag.The author �rst argues that all requirements speci�ed in the OODB Manifesto except object identity and ones7

stemming from it (mutable state etc), are accounted for by work done in Abstract Data Types and EquationalOrder-sorted logic. After that he describes an extension to account for these notions: dynamic logic. Its centralconcept is the one of object identity; it models changing state by a modi�cation of the possible worlds semanticswhere modalities are created by a special kind of entities: events. The whole system is called Conceptual ModelSpeci�cation Language (CMSL). See also [45].[54] M. I. Wolczko. Semantics of object-oriented languages. Technical Report (and PhD Thesis) UMCS{88{6{1, Department of Computer Science, University Manchester, May 1988.3 Logics for Inheritance Systems;Modules (Worlds) for Logic ProgrammingWork on modules for LP (multiple logic theories in one program) and inheritance for logic theories is theearliest e�ort to buy structuring concepts to LP: there has been \worlds" even in the early Prolog II ofColmerauer. Another form of inheritance which is considered in LP is inheritance amongst the data elements(terms); it modi�es the way uni�cation works. There is a wealth of theories of inheritance available in theliterature.Although in OOP modules and inheritance are completely orthogonal notions, in LP they are kind ofmixed (probably because LP is badly missing both). This is why they are mixed in this section.The use of the word \worlds" for LP modules is probably just a coincidence with its use in the term\possible worlds", but nevertheless various forms of Modal Logics are widely used to formalize notions ofmodules and inheritancs.Monteiro and Porto seem very knowledgeable in this area.References[1] K. Akama. Inheritance hierarchy mechanism in Prolog. In Fifth Conference on Logic Programming,number 264 in LNCS, pages 12{21, Tokyo, Japan, 1986. Springer-Verlag.Maintains a class/instance hierarchy. Prolog variables can be typed by a class name (so-called Class-BoundVariables). Uni�cation is extended to account for CBVs. Is-a and Part-of hierarchies are treated similarly.[2] V. Breazu-Tannen, T. Coquand, C. A. Gunter, and A. Scedrov. Inheritance as explicit coercion (pre-liminary report). In Fourth Annual Symposium on Logic in Computer Science, pages 112{129, AsilomarConference Center, Paci�c Grove, CA, June 1989. IEEE Computer Society Press. (An extended versionappeared in Information and Computation, 93(1):172{221, July 1991).We present a method for providing semantic interpretations for languages which feature inheritance in the frame-work of statically checked, rich type disciplines. We illustrate our approach on an extension of the language Funof Cardelli and Wegner, which we interpret via a translation into an extended polymorphic lambda calculus. Ourapproach interprets inheritances in Fun and coercion functions already de�nable in the target of the translation.Existing techniques in the theory of semantic domains can be then used to interpret the extended polymorphiclambda calculus, thus providing many models for the original language. Our method allows the simultaneousmodeling of parametric polymorphism, recursive types, and inheritance, something that was regarded as prob-lematic because of the seemingly contradictory characteristics of inheritance and type recursion on higher types.We identify the main di�culty in providing interpretations for explicit type disciplines featuring inheritance,namely that programs can type-check in more than one way. Since interpretations follow the type-checkingderivations, coherence theorems are required, (that is, one must prove that the meaning of a program does notdepend on the way it was type-checked), and we do prove them for our semantic method. Interestingly, provingcoherence in the presence of recursive types, variants, and abstract types forced us to reexamine fundamentalequational properties that arise in proof theory (in the form of commutative reductions) and domain theory (inthe form of strict vs. non-strict functions). (Author abstract).8

[3] A. Brogi, E. Lamma, and P. Mello. Inheritance and hypothetical reasoning in logic programming.In L. C. Aiello, editor, 9th European Conference on Arti�cial Intelligence (ECAI'90), pages 105{110,Stokholm, Sweden, Aug. 1990.[4] M. Bugliesi. A declarative view of inheritance in logic programming. In K. Apt, editor, Joint Interna-tional Conference and Symposium on Logic Programming, pages 113{127. The MIT Press, 1992.[5] W. Cook and J. Palsberg. A denotational semantics of inheritance and its correctness. In OOPSLA'89,New Orleans, LA, 1989. (SIGPLAN Notices, 24(10):433-443, Oct. 1989).[6] M. D. A logical analysis of modules in logic programming. Journal of Logic Programming, 1(2):79{108,1989.[7] C. Dichev. Logic programming with worlds. In B. du Boulay and V. Sgurev, editors, Arti�cial Intel-ligence V: Methodology, Systems, Applications (AIMSA'92), pages 57{66. Elsevier Science Publishers,1992.Considers various ways to combine clauses for the same predicate residing in di�erent \worlds" (modules).Clauses from the subworld (the specialization) can override completely the predicate, or replace only clauseswhich unify, or just add themselves to the predicate in the superworld (the generalization).[8] T. Finin and J. McGuire. Inheritance in logic programming knowledge bases. Journal of ComputerLanguages, 16(3-4):290{310, 1991.[9] K. Furukawa, R. Nakajima, and A. Yonezawa. Modularization and abstraction in logic programming.New Generation Computing, 1(2):169{178, Dec. 1983.[10] Y. Goldberg, W. Silverman, and E. Shapiro. Logic programs with inheritance. In International Con-ference on Fifth Generation Computer Systems, pages 951{960, ICOT, Japan, 1992.[11] E. Gregoire. Reducing inheritance theories to default logic and logic programs. In H. Jaakkolo andS. Linnainmaa, editors, Scandinavian Conference on Arti�cial Intelligence (SCAI'89), pages 493{458,Tampere, Finland, June 1989.[12] H. Kau�mann and A. Grumbach. MULTILOG: MULtiple worlds in LOGic programming. In SeventhEuropean Conference on Arti�cial Intelligence (ECAI'86), volume 1, pages 291{305, Brighton, UK,1986.[13] P. Mello. Inheritance as combination of Horn clause theories. In D. Lenzerini, D. Nardi, and M. Simi,editors, Inheritance Hierarchies in Knowledge Representation and Programming Languages. Wiley andSons, 1991.[14] L. Monteiro and A. Porto. Contextual logic programming. In G. Levi and M. Martelli, editors, SixthInternational Conference on Logic Programming, pages 284{299. The MIT Press, 1989.[15] L. Monteiro and A. Porto. Semantic and syntactic inheritance in logic programming. Draft report,Universidade Nova de Lisboa, Departamento di Informatica, Dec. 1990.[16] L. Monteiro and A. Porto. A transformational view of inheritance in logic programming. In D. H. D.Warren and P. Szeredi, editors, Seventh International Conference on Logic Programming, pages 481{494.The MIT Press, 1990.[17] E. Sandewall. Nonmonotonic inference rules for multiple inheritance with exceptions. IEEE,74(10):1345{1353, Oct. 1986.The semantics of inheritance `hierarchies' with multiple inheritance and exceptions is discussed, and a par-tial semantics in terms of a number of structure types is de�ned. Previously proposed inference systems forinheritance with exceptions are discussed. A new and improved system is proposed, using a �xed number of9

nonmonotonic inference rules. The hierarchy is viewed as a set of atomic propositions using the two relationsisa (subsumption) and nisa (nonsubsumption). General results concerning systems of nonmonotonic inferencerules can immediately be applied to the proposed inference system. 7 Refs.[18] D. T. Sannella and L. A. Wallen. A calculus for the construction of modular Prolog programs. Journalof Logic Programming, 12:147{178, 1992.[19] C. Solnon and M. Rueher. Inference of inheritance relationships from Prolog programs: A systemdeveloped with Prolog III. In M. Bruynooghe and M. Wirsung, editors, Programming LanguagesImplementation and Logic Programming (PLILP'92), pages 489{490, 1992.The �rst step on the way to objects are abstract types (eventually polymorphic). In the theoretical part of thearticle types are equated with their extents but in practice the system infers them constructively as a Descartesproduct, union or intersection of known types. For logic variables the type of the variable is a subtype of theintersection of its types in all its occurences in a clause. A further objective is to specialize types using constraints.[20] R. H. Thomason and J. F. Horty. Logics for inheritance theory. In M. Reinfrank, J. de Kleer, M. L.Ginsberg, and E. Sandewall, editors, Second International Workshop on Non-Monotonic Reasoning,pages 220{237, Grassau, Germany, June 1988.[21] D. Touretzky. The Mathematics of Inheritance Systems. Pitman, London, 1986.[22] Y.-K. Yang. Behind the inheritance relations in a semantic network. In IEEE Southeastcom '90 |Technologies Today and Tomorrow, pages 289{296, New Orleans, LA, Apr. 1990.There are many confused meanings on the use of ISA (is-a), AKO (a-kind-of), and ISPART (is-part) relations.This problem can be solved only by de�ning the precise meaning of the ISA, AKO, and ISPART relations, andby recognizing either a class node or an object node for a given node in a semantic network. The author makesclear, precise, and consistent de�nitions for these inheritance relations based on the two fundamental types ofinformation these relations are intended to represent: classes and objects. The features explored from theserelations make clear the use of these three relations and what properties each has. By dividing the propertiesrelated by ISA, AKO, and ISPART relations into property values and property attributes, it is found that aproperty value relates to a speci�c class or object only and is not an inheritable property, while a propertyattribute corresponds to the universal quanti�cation in predicate logic and is inheritable by the descendants ofa class or object. 11 Refs.4 Languages Integrating OOP and LPThere are quite a lot of languages (about 30) aiming to integrate OOP and LP. However none of them seemsperfect for reasons discussed in the beginning of Section 2. Nevertheless the good ideas abound.Languages which are heavily bound to Concurrent LP or Constraint LP are grouped in the correspondingsections.A��t-Kaci [1] and Zaniolo [37] are almost \classics" on the subject. Tyugu [31] has done some really earlywork in Tallinn, Estonia. McCabe [22] is the only book on the OOP+LP subject known to me. Conery[5, 4, 6] has got a really nice idea about how to model mutable state by literals which pass from one side ofa clause to the other side. Kahn [15, 16] seems \the guy with the bunch of ideas" (see also Section 7).References[1] H. A��t-Kaci and R. Nasr. LOGIN: A logic programming language with built-in inheritance. Journal ofLogic Programming, 3(3):185{215, Oct. 1986.An elaboration of the Prolog language is described in which the notion of �rst-order term is replaced by a moregeneral one. This extended form of terms allows the integration of inheritance|an IS-A taxonomy|directlyinto the uni�cation process rather than directly through the resolution-based inference mechanism of Prolog.10

This results in more e�cient computations and enhanced language expressiveness. The language thus obtained,called LOGIN, subsumes Prolog, in the sense that conventional Prolog programs are equally well executedby LOGIN. (Author abstract) 10 refs.[2] H. A��t-Kaci and A. Podelski. Towards a meaning of LIFE. In Programming Languages Implementationand Logic Programming (PLILP'91), pages 255{274, Passau, Germany, Aug. 1991.Logic, Inheritance, Functions, Equations (LIFE) is regarded as a composition of three separate instances of theConstraint Logic Programming (CLP) Scheme. Object uni�cation is represented by constraint solving. Type-theoretic, logical and algebraic renditions of the system are provided.[3] K. Benkerimi and P. M. Hill. Object-oriented programming in G�odel: An experiment. In A. Pettorossi,editor, Third International Workshop on Meta-Programming in Logic (META'92), pages 177{191, Up-psala, Sweden, June 1992.[4] J. S. Conery. HOOPS: an object-oriented Prolog. Technical report, University of Oregon, 1987.[5] J. S. Conery. Object-oriented programming with First-Order Predicate Calculus. Technical ReportCIS-TR-87-09, University of Oregon, Aug. 1987.[6] J. S. Conery. Logical objects. In R. A. Kowalski and K. A. Bowen, editors, Fifth International Confer-ence and Symposium on Logic Programming, pages 420{434, 1988.Models mutable state by introducing a new kind of literals|object literals|whose arguments carry the state.A program clause may have object literals both in the body and in the head. The object literal in the bodyrepresents object state prior to executing the method, and the literal in the head represents the state after theexecution, e.g.push(X), stack(S) :- stack([X|S]).pop(X), stack([X|S]) :- stack(S).The head is deemed a conjunction of literals, therefore "object clauses" are not really clauses (which are dis-junctions of literals). However this does not change the inference method drastically (it is very similar to normalbinary resolution) because object literals are not pursued by themselves, but only together with the \real" goals.Thus the proof that some object exists is constructed in parallell with the proof that is has certain properties.[7] M. Dalal and D. Gandopadhyay. OOLP: A translation approach to object-oriented logic programming.In W. Kim, J.-M. Nicolas, and S. Nishio, editors, First International Conference on Deductive andObject-Oriented Databases (DOOD'89), pages 593{606, Kyoto, Japan, Dec. 1989.The paper describes two languages: OOLP and OOLP+ which are translated to Prolog.[8] B. Freeman-Benson. Kaleidoscope: Mixing objects, constraints, and imperative programming. InECOOP/OOPSLA'90, Ottawa, Ontario, 1990. (SIGPLAN Notices 25(10):77{88, Oct. 1990).Tries to integrate the imperative programming paradigm with the declarative-constraint one. The former providessequencing, the latter provides object relations. Variables are regarded as streams. Multiple views are a natuaralconsequence of this integration. 32 Refs.[9] E. Gullichsen. BiggerTalk: An object-oriented Prolog. Technical Report STP-125-85, MCC-STP,Austin, TX, Nov. 1985.[10] I. H. and K. H. Extending logic programming to object programming: the system LAP. In IJCAI'87,pages 34{39, Milan, Italy, 1987.[11] J. S. Hodas and D.Miller. Representing objects in a logic programming language with scoping constructs.In D. H. D. Warren and P. Szeredi, editors, Seventh International Conference on Logic Programming,pages 511{526. The MIT Press, 1990.[12] M. H. Ibrahim. KSL: A re
ective object-oriented programming language. In 1988 International Con-ference on Computer Languages, pages 186{193, Miami Beach, FL, Oct. 1988.11

[13] M. H. Ibrahim and F. A. Cummins.KSL/Logic: Integration of logic with objects. In 1990 InternationalConference on Computer Languages, pages 228{235, New Orleans, LA, Mar. 1990. IEEE ComputerSociety Press.KSL/Logic is an integration of logic and object-oriented programming that adds the declarative framework anddeductive reasoning of logic programming to the powerful modeling capabilities of the object-oriented paradigm.Predicates, logic expressions, and the generalized search protocol of KSL/Logic are implemented as an integralpart of KSL, a re
ective, object-oriented programming language. KSL/Logic provides capabilities that gobeyond those of Prolog to permit domain-based reasoning, functional arguments, matching of complex objectpatterns, and object representation of facts. The syntax and semantics of KSL/Logic are described, and theobject implementation of its predicate resolution is examined. 13 Refs.[14] M. H. Ibrahim and F. A. Cummins. Objects with logic. In Cooperation. ACM 18th Annual ComputerScience Conference, pages 128{133, Washington, DC, Feb. 1990.This paper describes an approach to the integration of logic and object programming where predicates, logicexpressions, and a generalized search protocol that support Prolog-like reasoning are implemented as an integralpart of an object-oriented language. This logic programming facility provides 1) domain-based reasoning, 2)functional arguments, 3) support of the abstraction power of object-oriented languages, and 4) matching ofcomplex object patterns, none of which are available in Prolog. The integration does not require logic facts tobe local predicates in the environment; instead, facts are represented as objects in the application model. Thispermits recursive reasoning and backtracking on predicates that are de�ned on di�erent domains. The designconcepts and implementation of this approach are presented and its application is illustrated by an example.(Author abstract) 10 Refs.[15] K. M. Kahn. Uniform: a language based upon uni�cation which uni�es (much of) Lisp, Prolog andAct 1. In IJCAI'81, pages 933{939, 1981.This early paper claims that the same program may serve as: function, inverse function, predicate, pattern,generator. An extended form of uni�cation may serve as pattern matching, evaluation, message passing, inher-itance (an example of the latter is unifying the description of red-chairs with the description of big-chairs toget big-red-chairs). Uni�cation is augmented beyond simple Prolog's syntactic uni�cation (which is still thedefault) by asking the two entities to unify themselves the way they see �t. One can add uni�cation rules (e.g.that two expressions unify; similarly to the de�ning rules in non-free word algebras) thus invoking simpli�cationmechanisms.[16] K. M. Kahn. Intermission|Actors in Prolog. In K. L. Clark and S. A. T�arnlund, editors, LogicProgramming, pages 213{228. Academic Press, 1982.First discusses de�ciencies of Prolog: no types (only terms and lists), no lazy evaluation (\virtual datastreams"). Claims that implementing Actors in Prolog will carry over the well-understood semantics of Pro-log into Actors. The implementation is clean, general,
exible and very ine�cient. Each new object/method isintroduced by extending the predicate sent(target, message, result). Therefore there is no compact (at oneplace) description of actors: all actor behaviors go through sent. The target is an actor generally of the typelist(type, acquaintances). Delegation: when an actor cannot handle a message, it passes it to its proxy. Theequivalent of instance variables can be added dynamically.[17] E. Laenens, D. Vermeir, and B. Verdonk. LOCO, a LOgic-based language for Complex Objects. InESPRIT'89: Sixth Annual Esprit Conference, pages 604{616, Brussels, Nov. 1989.[18] Y. Lou and Z. M. Ozsouoglu. LLO: An object-oriented deductive language with methods and methodinheritance. In 1991 ACM SIGMOD International Conference on Management of Data, Denver, CO,May 1991. (SIGMOD Record, 20(2):198{207, June 1991).[19] J. Malenfant, G. Lapalme, and J. Vaucher. ObjVProlog: Metaclasses in logic. In S. Cook, editor,European Conference on Object-Oriented Programming (ECOOP'89), pages 257{269, Nothingham, UK,July 1989. 12

[20] J. Malenfant, G. Lapalme, and J. Vaucher. Metaclasses for metaprogramming in logic. In SecondInternational Symposium on Meta-Programming in Logic, pages 257{271, Leuven, Belgium, Apr. 1990.[21] J. Malenfant, G. Lapalme, and J. Vaucher. ObjVProlog-D: A re
exive object-oriented logic languagefor distributed computing. OOPS Messenger, 2(2):78{81, Apr. 1991.Implemented in Quintus Prolog. Runs on a network of workstations.[22] F. G. McCabe. Logic & Objects. International Series in Computer Science. Prentice-Hall, 1992.This is the only book in the area known to me. It is based on the author's PhD Thesis at Imperial College, Uni-versity of London (1988). It describes the Logic & Objects extension of IC-Prolog. The language providesfor multiple logic theories, encapsulated in blocks and marked by \labels" (object identi�ers). The labels can beany terms (they may have arguments) thus parameterizing the object theory:person(Age,Sex): fsex(S) :- S=Sex. % return sexlikes(Person) :- Person:sex(OtherSex), % call to another object (theory)OtherSex<>Sex. % hmmgA label may inherit another one by \class rules"; the inheritance is accumulating or overriding; multiple inheri-tance is allowed; there are no explicit classes (prototype-based language):person<=animal. % class rule: establishes inheritanceperson<=socialAgent % multiple inheritance allowedjim<=person(30,male). % instanceOf the same as subclassOfpenguin<<bird. % overriding inheritance: do not inherit "fly"penguin: ffly :- fail.g % because penguins don'tIt also integrates (conditional) equalities and functions, and has destructive assignment:merge([H1|T1],[H2|T2])=[H1|merge(T1,[H2|T2])] :- H1<=H2.merge([H1|T1],[H2|T2])=[H2|merge([H1|T1],T2)] :- H1>H2.Table of contents: review of a number of mergers; description of the language; discussion of the mixed pro-gramming methodology which emerges (divide & conquer and browse & modify); examples: L&O graphics, ageneral packer program and a traveling salesman algorithm with graphical interfaces; formal semantics of theproposed extension by translation of L&O clauses to Prolog clauses. Although the problem of mutable stateis not addressed (assignment does not count; the semantics just disregards it), the language demonstrates veryconvincingly the synergism of OOP+LP.[23] G. Mints and E. H. Tyugu. The programming system PRIZ. Journal of Symbolic Computing, 5:359{375,1988. See [31].[24] C. Moss. An introduction to Prolog++. Research Report DOC 90/10, Imperial College, London,June 1990.[25] Z. Palaskas and P. Loucopoulos. Amore | object-oriented extensions to Prolog. In Technology ofObject-Oriented Languages and Systems (TOOLS'89), pages 379{393, Paris, France, 1989.A language for specifying and maintaining information bases. The paper describes also the Rubric runtimesystem developed in Amore. 39 Refs.[26] Z. Palaskas, P. Loucopoulos, and F. van Assche. Amore| object-oriented extensions to Prologfor theRubric implementation environement. In Sixth Annual ESPRIT Conference, pages 475{489, Brussels,Belgium, Nov. 1989. Kluwer Academic Prublishers.[27] J. Plaser. The multiparadigm language G. Journal of Computer Languages, 16(3-4):235{258, 1991.[28] O. R.A. Towards an algebra for constructing logic programs. In IEEE Symposium on Logic Programming,pages 152{160, 1985. 13

[29] F. Staes, E. Laenens, and D. Vermeir. A seamless integration of graphics and dialogues within a logicbased object-oriented language. Journal of Visual Computing, 1(4):313{332, Dec. 1990.A User Interface subsystem for the Kiwis system implemented in the language LOCO [17]. 9 Refs.[30] R. B. Terwilliger and P. A. Kirslis. PK/C++: An object-oriented, logic-based, executable speci�cationlanguage. In Twenty-Second Annual Hawaii International Conference on System Sciences, Kailua-Kona,HI, Jan. 1989.Encompass is an environment that supports software development using formal techniques similar to the ViennaDevelopment Method (VDM). In Encompass, software can be speci�ed using the Please family of executablespeci�cation languages. PK/C++, the latest member of the Please family, di�ers from its predecessor byhaving C++ rather than Ada as its base language, by having an operational as well as declarative semantics,and by being based on
at rather than standard Prolog. PK/C++ speci�cations can be used in proofs ofcorrectness. They are also executable, so that initial speci�cations can be validated and re�nements can beveri�ed using testing-based techniques. The authors give an overview of Encompass, describe PK/C++ inreasonable detail, and give an example of development using the language. 24 Refs.[31] E. Tyugu. Three new-generation software environments. Communications of the ACM, 34(6):46{59,June 1991.The system PRIZ has been under development at the Institute of Cybernetics, Tallinn, Estonia since mid-seventies. This article describes three environmants of di�erent sophistication based on this system: Expert-PRIZ, a simple expert system shell; C-PRIZ, a language integrating imperative programming (C); and NUT(New UTopist; Utopist was the initial programming language of PRIZ), an object-oriented environment.Data elements in Utopist (attributes of objects) can be bound by both inter- and intra-object relations. Theserelations are used by a propositional theorem prover to generate a prooof that it is possible to compute a certaindatum given some other data. This (constuctive) proof is used to synthesize a program which computes thedatum. So PRIZ has a quite non-standard logic component: compile-time proof and program generation in-stead of run-time clause resolution. These technique are called Propositional Logic Programming and StructuralProgram Synthesis. NUT is a prototype-based (as opposed to class-based) language: any object can be usedas a template (type) for a new object (and of course as a component of a new object). Limited polymorphismis supported through a generic type (any) . It is notable that some of the modern programming paradigms(constraint programming, object-orientation, employing logic in computation) have been considered so early.[32] E. H. Tyugu. Propositional logic programming. Computers and Arti�cial Intelligence (Czechoslovakia),8(4):357{368, 1989.[33] E. H. Tyugu et al. NUT|an object-oriented language. Computers and Arti�cial Intelligence, 5(6):521{542, 1986.[34] K. Y. Amalgamating multiple programming paradigms in Prolog. In IJCAI'87, pages 76{86, Milan,Italy, 1987.[35] H. Yasukawa, H. Tsuda, and K. Yokota. Objects, properties, and modules inQuixote. In InternationalConference on Fifth Generation Computer Systems, pages 257{268, ICOT, Japan, 1992.[36] S. Yokoi. A Prolog based object-oriented language SPOOL and its compiler. In Fifth Conference onLogic Programming, number 264 in LNCS, pages 116{125, Tokyo, Japan, 1986. Springer-Verlag.Compiles SPOOL to Prolog. Methods are represented by Prolog program clauses and messages by Prologcalls. SPOOL has multiple inheritance and metaclasses.[37] C. Zaniolo. Object-oriented programming in Prolog. In International Symposium on Logic Program-ming, pages 265{270, Atlantic City, Atlanta, Feb. 1984.Objects are represented as predicates with instance variables modeled by predicate arguments (e.g.regular-polygon(Sides, Length)). Methods are attached to predicates by a binary constructor Object with:List-of-methods. Each method is a set of independent clauses which an use the instance variables and delegate14

responsibilities through inheritance. Mutable state is modeled by assert/retract (modi�cation of the logicprogram).5 Implementation-Oriented DevelopmentsI have gathered in this section papers dealing with implementations of OOP in LP or LP in OOP, treatingspeci�c implementation isues, discussing various environments, describing what seem to be not very completeand/or general languages, etc.; said shortly, papers I deemed not �tting very well in the previous section.The distinction however is neither very clear nor principled, so generally one should look in both sections.References[1] G. Castelli and F. Mariani. An Eiffel class for the integration of object-oriented and declarativeprogramming. In Technology of Object-Oriented Languages and Systems (TOOLS'89), pages 395{400,Paris, France, 1989.An Eiffel class, Inference, forms the basis for an extensible Prolog interpreter. 39 Refs.[2] P. T. Cox. Using object-orientation to implement logic programming. In 1990 ACM SIGSMALL/PCSymposium on Small Systems, pages 106{114, Arlington, VA, Mar. 1990.Implemented in Prograph, a picture-based language. 22 Refs.[3] T. Koschmann and M. W. Evens. Bridging the gap between object-oriented and logic programming.IEEE Software, 5(4 or 5?):36{42, July 1988.A description is given of an interface that was developed between Loops and Xerox Quintus Prolog. Loopsis an extension to the Xerox AI Environment to support object-oriented programming; Xerox Quintus Prologis a version of Prolog that runs on Xerox Lisp machines. Such a bridge enables all the support tools of bothenvironments to be accessed, and degradation of performance that occurs when one language is implemented ontop of another is avoided. The interface has three layers. At the lowest level, a set of Prolog predicates givesthe Prolog programmer access to Loops objects. This lowest level is the bridge from Prolog to Loops. Atthe next level, programming tools in the Loops environment let object methods be de�ned in Prolog. At thehighest level, the Prolog programmer can treat Prolog clauses as Loops objects that can be manipulatedoutside the Prolog database. Each layer can be used independently. 9 Refs.[4] E. Lamma, M. P., and N. A. An extended Warren Abstract Machine for the execution of structuredlogic programs. Journal of Logic Programming, 14:187{222, 1992.[5] D. Lanovaz and D. Szafron. An object-oriented inference engine for Prolog. Technical Report TR90-18, University of Alberta, 1990.Implementation of Prolog in Smalltalk. Each clause is a (persistent) object which knows how to unify andexecute itself as well as which other clauses to call. Part of the G�odel project.[6] G. L. Lazarev. Prolog/V: Prolog in the Smalltalk environment. Dr. Dobb's Journal of SoftwareTools, 13(11/145):68{80, 98{102, Nov. 1988.Describes brie
y (mainly by examples) a commercial Prolog system developed and integrated in Smalltalk/V.[7] M. Levy and R. N. Horspol. Translation of Prolog to C++. Internal report, University of Victoria,1990.[8] V. Loia and M. Quaggetto. Extending CLOS towards logic programming: A proposal. OOPS Messen-ger, 4(1):46{51, Jan. 1993.Common Lisp Object System (CLOS) provides generic functions, multiple inheritance, meta-object protocol,and declarative method combination. The authors show how Prolog can be run in it. Selection rule (which15

clause to try next) is extended over Prolog's one: each clause is an instance of a generic method and cancheck for the input/output mode of its head literal (and even �ner details like whether an argument is a cons)before uni�cation. Computiation rule (which subgoal to prove next) is the same as in Prolog: from left toright. Backtracking is implemented by CLOS generators employing lazy evaluation (authors de�ne two macros:send-value and multi-let*). It seems that there is no compiler from Prolog to this system yet: CLOSmethods are hand-crafted. Bad English.[9] B. E. May�eld and J. C. Na. Prolog methods for Common Lisp + Flavors. In Knowledge-BasedSystems and Neural Networks: Techniques and Applications, pages 29{39, Stillwater, OK, Nov. 1990.PLOS (Prolog/Lisp Object System) gives coexistence to Prolog and Common Lisp. It includes extendedinheritance of Prolog methods.[10] E. Meirlaen, J. M. Trinon, and R. Venken. An object-based prototyping workbench in Prolog. InFifth Annual ESPRIT Conference, volume 1, pages 423{437, Brussels, Belgium, Nov. 1988.[11] F. Mellender. An integration of logic and object-oriented programming. SIGPLAN Notices, 23(10):181{185, 1988.[12] C. Michel and M. Rueher. Logic programming, object-oriented programming and rapid prototyping. InSecond International Workshop on Software Engineering and its Applications, pages 417{431, Toulouse,France, Dec. 1989.[13] T. Reix. SP-Object. Object extensions in the SP-Prolog v.2.1 system. In Technology of Object-Oriented Languages and Systems (TOOLS'89), pages 395{400, Paris, France, 1989.SP-Prolog is the language of choice of Bull SA. The extension is integrated in the system (it is not implementedby a preprocessor). 33 Refs.[14] S. Roggenbuck, R. Gebhardt, and W. Ameling. Prolog as method language in an object-orientedprogramming environment (in German). Angewandte Informatik, 31(5):181{188, 1990.[15] A. Schmidt and F. Belli. Extension of Prolog for object-oriented programming in logic. In 3rd In-ternational Conference on Industrial and Engineering Applications of Arti�cial Intelligence and ExpertSystems - IEA/AIE'90, pages 1153{1161, Charleston, SC, July 1991.In this paper, we attempt extending Logic Programming `smoothly' in order to allow object-orientation in aProlog-like environment. We call our extension PROLoop (Yet another Prolog-based Language for Object-Oriented Programming). PROLoop is the essential component of a Prolog-based environment (PROViro) todevelop knowledge and rule-based expert systems. PROViro consists of a series of pragmatic components as totesting (PROTest), knowledge version control (PROVers), self actualization of the documentation (PROS-elf), etc. The potential of PROLoop stems from its simplicity. This simplicity makes PROLoop easy to use andto extend, allows to achieve a high degree of reliability of PROLoop programs, increases their maintainability,etc. Because of its artlessness, PROLoop is also a good example for understanding and teaching object-orientedprogramming. Nevertheless, PROLoop possesses su�cient expression power which we demonstrate by includingnon-trivial examples produced in a real project. (Author abstract).[16] E. P. Stabler, Jr. Object-oriented programming in Prolog. AI Expert, pages 46{57, Oct. 1986.[17] S. Tyszberowicz and A. Yehudai. Observ - a prototyping language and environment combining object-oriented approach, state machines and logic programming. In Twenty-Third Annual Hawaii Interna-tional Conference on System Sciences, volume II: Software Track, pages 247{256, Kailua-Kona, HI, Jan.1990.The Observ methodology for software development is based on rapid construction of an executable speci�cation(or prototype) of a system, which may be examined and modi�ed repeatedly to achieve the desired function-ality. The objectives of Observ also include facilitating a smooth transition to a target system and providingthe means for reusing speci�cation, design, and code of (sub)systems. Of particular interest is the handling of16

embedded systems, which are likely to have concurrency and real-time requirements. The Observ prototypinglanguage combines several paradigms to express the behavior of a system. The object-oriented approach providesthe basic mechanisms for building a system from a collection of objects, with well-de�ned interfaces betweenthem. Finite-state machines are used to model the behavior of individual objects. At a lower level, activitiesthat occur within objects are described with the logic-programming paradigm, thus allowing a nonproceduraldescription when possible. An attempt has been made to provide
exible tools for executing (simulating) theprototype being built, as well as for browsing and static checking. The current implementation of the tools iswindow-based but not graphical. 26 Refs.[18] S.-i. Wu. Integrating logic and object-oriented programming. OOPS Messenger, 2(1):28{37, Jan. 1991.Describes a logic extension to C++ called LogiC++. Member functions of C++ classes can be written inProlog. A preprocessor accepts methods written in Prolog and produces C++. The implementation doesnot seem horribly e�cient.[19] S.-i. Wu. LogiC++: An integrated logic and object-oriented language. In USENIX C++ Conference,pages 235{243, Washington, DC, Apr. 1991.6 Formal Speci�cation of Object-Oriented SystemsA number of OO Software Engineering methodologies has been proposed (e.g. Wirfs-Brock, Wilkerson andWiener; Rumbaugh; Booch; Coad and Yordon), but most of them lack rigor. This section includes articleswhich are aimed to a formal speci�cation of OO systems.References[1] J. Fiadeiro, C. Sernadas, T. Maibaum, and G. Saake. Proof-theoretic semantics of object-oriented speci-�cation constructs. In R. Meersman, W. Kent, and S. Khosla, editors, Object-Oriented Databases: Anal-ysis, Design and Construction. Fourth IFIP TC2 WG2.6 Working Conference on Database Semantics(DS-4), pages 243{284, Windermere, UK, 1990. North-Holland.[2] H. B. M. Jonkers. Introduction to COLD-K. In M. Wirsing and J. A. Bergstra, editors, AlgebraicMethods: Theory, Tools and Applications, number 349 in LNCS, pages 139{206. Springer-Verlag, 1989.[3] H. B. M. Jonkers. Inheritance in COLD. In J. A. Bergstra and L. M. G. Feijs, editors, Algebraic MethodsII: Theory, Tools and Applications, number 490 in LNCS, pages 277{301. Springer-Verlag, 1991.[4] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented speci�cation of informationsystems: The Troll language. Technical Report Informatik-Bericht 91-04, Technical University Braun-schweig, Germany, 1991.[5] G. Saake and R. Jungclaus. Speci�cation of database applications in the Troll language. In InternationalWorkshop on Speci�cation of Database Systems, pages 228{245, Glasgow, UK, July 1991.[6] G. Saake, R. Jungclaus, and H.-D. Ehrich. Object-oriented speci�cation and stepwise re�nement. InJ. de Meer, V. Heymer, and R. Roth, editors, International IFIP Workshop on Open Distributed Pro-cessing, volume 1 of IFIP Transactions C: Communication Systems, pages 99{121, Berlin, Germany, Oct.1991. North-Holland.[7] A. Sernadas, C. Sernadas, and H.-D. Ehrich. Object-oriented speci�cation of databases: An algebraicapproach. In Thirteenth International Conference on Very Large Databases (VLDB'87), pages 107{116,Brighton, UK, 1987. 17

[8] F. J. van der Linden. Object-oriented speci�cation in COLD. Technical Report RWR-508-re-92007,Phillips Research Labs, Eindhoven, Netherlands, Sept. 1992. flinden@prl.phillips.com.[9] F. J. van der Linden. Formal methods: From object-based to object-oriented. Technical Report RWR-508-re-93004, Phillips Research Labs, Eindhoven, Netherlands, Jan. 1993. flinden@prl.phillips.com.7 Connections to Concurrent Logic Programming and ActorsConcurrent LP is intimately connected to OOP+LP, I believe, because of a reason more pragmatic thencausal: when one seeks to write really large programs in LP, one has to consider both concurrency (in orderto achieve speed) and object orientation (in order to cope with the complexity of the application). On theother hand, because objects are inherently distributed, it is natural to describe distributed systems in termsof objects/actors. However OOP+LP has importance in itself: it can be applied very pro�tably in sequentialprogramming as well.This section contains articles both theoretical and dealing with programming languages. There is a lotof articles on Concurrent LP in the most current literature which I have omitted.A lot of work in this direction has been done in Japan under the auspices of the Fifth GenerationComputer Systems Project [1, 2, 6, 8, 9, 10, 16, 17, 18, 21, 22]. Another author to be mentioned here isKahn.References[1] T. Chikayama. ESP{Extended Self-contained Prolog{as a preliminary kernel language of �fth gener-ation computers. New Generation Computing, 1:11{24, 1983.[2] T. Chikayama. Unique features of ESP. In International Conference on Fifth Generation ComputerSystems, pages 292{298, Tokyo, Nov. 1984.[3] A. Davison. Polka: a Parlog object-oriented language. Technical report, DOC, Imperial College,London, 1988.[4] A. Davison. From Parlog to Polka in two easy steps. In J. Maluszy�nski and M. Wirsing, editors,Third International Symposium on Programming Language Implementation and Logic Programming,PLILP'91, number 528 in LNCS, pages 171{182. Springer-Verlag, 1991.The parallel LP language Parlog is enhanced by some basic OO concepts (encapsulation, data hiding, messagepassing) to form Parlog++. Adding multiple inheritance and self-communication renders Polka.[5] A. Eliens. Extending Prolog to a parallel object-oriented language. In IFIP WG 10.3 WorkingConference, pages 159{170, Lyon, France, Dec. 1989.[6] K. Fukunaga and S. Hirose. An experience with a Prolog-based object-oriented language. In OOP-SLA'86, Portland, OR, Sept. 1986.[7] T. Hartmann and R. Jungclaus. Abstract description of distributed object systems. In M. Tokoro,O. Nierstrasz, , and P. Wegner, editors, ECOOP'91 Workshop on Object-Based Concurrent Computing,number 612 in LNCS, pages 227{244, Geneva, Switzerland, 1991. Springer-Verlag.[8] Y. Ishikawa and M. Tokoro. Concurrent object-oriented knowledge representation language Ori-ent84/K: Its features and implementation. In OOPSLA'86, Portland, OR, Sept. 1986.[9] Y. Ishikawa and M. Tokoro. Orient84/K: A language with multiple paradigms in the object framework.In Nineteenth Annual Hawaii International Conference on System Sciences, volume II: Software Track,Honolulu, HI, Jan. 1986. 18

[10] R. Iwanaga and O. Nakazawa. Development of the object-oriented logic programming language CESP.Oki Technical Review, 58(142):39{44, Nov. 1991.Common ESP brings OO to LP. Comes with an adaptible environment.[11] K. M. Kahn. Vulcan: Logical concurrent objects. In E. S. Shapiro, editor, Concurrent Prolog:Collected Papers, volume 2, pages 274{303. MIT Press, 1986.[12] K. M. Kahn. Objects{a fresh look. In S. Cook, editor, European Conference on Object-OrientedProgramming (ECOOP'89), pages 207{223, Nothingham, UK, July 1989.Objects are considered as perpetual recursive predicates which consume mesage streams.[13] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Objects in concurrent logic programminglanguages. In OOPSLA'86, Portland, OR, Sept. 1986.[14] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Vulcan: Logical concurrent objects. InB. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Programming, pages 75{112,Cambridge, MA, 1987. MIT Press.[15] P. Mello. Concurrent objects in a logic programming framework. In ACM SIGPLAN Workshop onObject-Based Concurrent Programming, San Diego, CA, Sept. 1988. (SIGPLAN Notices 24(4):37{39,Apr. 1989)Some papers discuss and point out the synergetic advantages of combining logic and object-based programming.This work is mainly focussed on outlining those advantages with particular reference to concurrency. At thestate of the art the most interesting, complete proposals on this topic that deal with concurrency are built onthe top of the Concurrent-Prolog logic programming language (CP), which is intrinsically parallel and notcompatible with the sequential model of Prolog. An alternative approach could be to directly extend Prolog,the most widely used logic programming language, in order to introduce in it concepts that are typical of paralleland distributed object-oriented systems without losing the advantages of a declarative language. 14 Refs.[16] H. Miyoshi and K. Furukawa. Object-oriented parser in the logic programming language ESP. InNatural Language Understanding and Logic Programming, First International Workshop, pages 107{119, Rennes, France, Sept. 1984. North-Holland.In this paper we propose an object-oriented parsing mechanism for logic programming language ESP. In thisobject-oriented parser, each program component is abstracted as a class, and access between the two classesis performed by a message-passing mechanism. Since grammatical categories are also abstracted as classes, theintrinsic grammatical features which are implemented as predicate arguments in DCG, are described as instancesof category classes. This helps to simplify Horn clause grammar rule description. Being implemented in the logicprogramming language ESP, the fundamental mechanism of DCG is also applicable to our parser. 16 refs.[17] T. Mori and R. Iwanaga. The development of a programming environment for an object-oriented logicprogrammming language | ESP. Oki Technical Review, 57(137):53{58, May 1991.Discusses an environment for the language ESP on machine PSI (Personal Sequential Inference under SIMPOS(Sequential Inference Machine Program and Operating System.[18] M. Ohki, A. Takeuchi, and K. Furukawa. An object-oriented programming language based on theparallel logic programming language KL1. In J.-L. Lassez, editor, Fourth International Conference onLogic Programming, MIT Press Series in Logic Programming, pages 894{909, 1987.[19] E. Shapiro and A. Takeuchi. Object-oriented programming in Concurrent Prolog. New GenerationComputing, 1:25{48, 1983.[20] J. Vaucher, G. Lapalme, and J. Malenfant. SCOOP: Structured Concurrent Object-Oriented Prolog.In European Conference on Object-Oriented Programming (ECOOP'88), number 322 in LNCS, pages191{211. Springer-Verlag, 1988.Object state change is modeled by non-logical means: assert/retract predicates to modify the logic program.19

[21] K. Yoshida and T. Chikayama. A'UM = stream + object + relation. In OOPSLA'89, New Orleans,LA, 1989. (SIGPLAN Notices, 24(10):55-58, Oct. 1989).[22] K. Yoshida and T. Chikayama. A'UM|a stream-based concurrent object language. New GenerationComputing, 7:127{157, 1990.8 Connections to Constraint Logic ProgrammingSince the de�nition of the Constraint Logic Programming (CLP) Scheme by Ja�ar and Lassez CLP hasunderwent a very fast development. It may be interesting to note that the common area between ConcurrentLP and Constraint LP has already been \institutionalized": Concurrent Constraint Programming.References[1] W. Havens, S. Sidebottom, G. Sidebottom, J. Jones, and R. Ovans. Echidna: a constraint logic pro-gramming shell. In Twelfth Paci�c Rim International Conference on Arti�cial Intelligence, Seoul, Corea,1992.Integrates object-oriented schema Knowledge Representation, Constraint Logic Programming on reals, intelli-gent backtracking via justi�cation-type reason maintenance. Objects are persistent predicate schemata. Messagepassing is done through uni�cation.[2] M. van Biema, G. Q. Maguire, and S. Stolfo. The constraint-based paradigm: Integrating object-oriented and rule-based programming. In Twenty-Third Annual Hawaii International Conference onSystem Sciences, volume II: Software Track, pages 358{366, Kailua-Kona, HI, Jan. 1990.[3] S. Watari, Y. Honda, and M. Tokoro. Morphe: A constraint-based object-oriented language supportingsituated knowledge. In International Conference on Fifth Generation Computer Systems, pages 1044{1051, ICOT, Japan, 1992.9 Deductive Object-Oriented DatabasesThis area is relatively young: the �rst conference on it was held in 1988 [14]. It is highly correlated toOOP+LP because these databases have to have some database programming language, right? But onceagain, OOP+LP is a self-important area which may have quite general application.References[1] S. Abiteboul. Towards a deductive onbject-oriented database language. Data and Knowledge Engineer-ing, 5(4):263{289, 1990.The author describes a logic-based language for databases with sets, tuples, lists, object identity and structuralinheritance. Methods can be overloaded/supplied externally.[2] A. M. Alashqur, S. Y. W. Su, and H. Lam. Rule-based language for deductive object-oriented databases.In Sixth International Conference on Data Engineering, pages 58{67, Los Angeles, CA, Feb. 1990.A deductive rule-based language for object-oriented databases is presented. A deductive rule in this languagederives new patterns of associations among objects of some selected classes if these objects fall in certain 'base'or other derived patterns. The patterns of object associations derived by a rule are held in a subdatabase whoseintension consists of some selected classes and their associations. In other words, the structure of a derivedsubdatabase is represented using the structural constructs provided by the object-oriented data model andhence can be uniformly operated on by other rules to further derive new subdatabases. Therefore, the world ofsubdatabases is closed under this rule-based language. 23 Refs.20

[3] F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca, and R. Zicari. Integrating object-oriented data mod-eling with a rule-based programming paradigm. In 1990 ACM SIGMOD International Conference onManagement of Data, Atlantic City, NJ, May 1990. (SIGMOD Record 19(2):225{236, Feb. 1990).[4] Y. Caseau. A deductive object-oriented language. In Annals of Mathematics and Arti�cial Intelligence,Feb. 1991. Special issue on Deductive Databases.[5] W. Chen, M. Kifer, and D. S. Warren. HiLog as a platform for database languages (or why predicatecalculus is not enough). In R. Hull, R. Morrison, and D. Stemple, editors, Second International Workshopon Database Programming Languages, pages 315{329 or 121{135?, Glenden Beach, OR, June 1989.Morgan-Kaufmann.[6] A. El Habbash, J. Grimson, and C. Horn. Towards an e�cient management of objects in a distributedenvironment. In Second International Symposium on Databases in Parallel and Distributed Systems,pages 181{190, Dublin, Ireland, 1990.A prototype of an object-oriented system implemented in C-Prolog is described. Its main objective is todemonstrate system features that would support e�cient management of objects and object-oriented databasesin a persistent and distributed environment. Mechanisms at the low level of the system were considered to supportobject distribution, mobility control, and con�guration management in a simple and uniform way. Objects existin clusters, which are transparent to the applications. The prototype is a framework for a self-organizing object-oriented distributed system. 23 Refs.[7] M. Fornarino, A.-M. Pinna, and B. Trousse. An original object-oriented approach for relation manage-ment. In J. P. Martinsand and E. M. Morgado, editors, EPIA '89: Fourth Portuguese Conference onArti�cial Intelligence, number 390 in LNCS, pages 13{26, Lisbon, Portugal, Sept. 1989. Springer-Verlag.[8] G. Gardarin. New approaches to advanced database applications. In First European Conference onInformation Technology for Organizational Systems, page 843, Athens, Greece, May 1988.[9] J. Grant and T. K. Sellis. Extended database logic. complex objects and deduction. InformationSciences, 52(1):85{110, Oct. 1990.Database logic was proposed in the late 1970s as a generalization of �rst-order logic in order to deal in a uniformmanner with relational, hierarchic, and network databases. At about the same time, the study of deductive(relational) databases has become important, primarily as a vehicle for the development of expert databasesystems. Also, Prolog, the main logic-programming language, has become prominent for many applicationsin arti�cial intelligence, and its connections with deductive databases have been investigated. Although therelational model provides a suitable framework for traditional, essential data-processing applications, severalresearchers have found the need for complex objects in newer applications, such as engineering databases. Inthis paper we show how database logic can be extended in two directions: (1) to include complex objects, and (2)to provide deductive capabilities for hierarchic and network databases. Thus, extended database logic providesa logical formalism as the foundation for the study of complex objects. (Author abstract) 18 Refs.[10] P. M. D. Gray and G. J. L. Kemp. OODB with entity-based persistence. In Colloquium on Very LargeKnowledge-Based Systems, volume 96, page 4, Stevenage, England, June 1990. IEE, Michael FaradayHouse.At Aberdeen we have built an object-oriented database (P/FDM) as a natural extension of Shipman's FunctionalData Model (FDM) which is itself founded on entity-relationship concepts. We are using this to store 50 Mbof protein structure data, including the coordinates of every atom in over 80 proteins. The database is mainlyused to search for fragments of protein backbone that are of interest, either because of their shape, or because oftheir relationship to other substructures (helices, sheets, loops). It also has a completely general query language(Daplex), which is founded on set- abstraction, list comprehensions and functions. It can call out to functionswhich may do arbitrary computations, combined with database search and updates. Most of the database systemis written in compiled Prolog; this calls to C routines which access UNIX �le structures. The Daplex languageis compiled into Prolog, and one can also write complex searches directly in Prolog. 7 Refs.21

[11] S. Greco and P. Rullo. Complex-Prolog: A logic database language for handling complex objects.Information Systems, 14(1):79{87, 1989.The logic language paradigm represents a natural extension of relational databases. However, one of its limita-tions is the lack of suitable data abstraction mechanisms for modeling complex objects. This paper describesComplex-Prolog, a logic database language that provides facilities for data abstraction, notably, the notionsof object identity, class and inheritance. This language was designed as an attempt to integrate concepts fromlogic programming and semantic data models. A formal de�nition of Complex-Prolog, interspersed with anumber of examples, is given. The paper concludes with a description of its implementation. (Author abstract)24 Refs.[12] S. Greco and P. Rulo. Complex: An object-oriented logic programming system. IEEE Transactionson Knowledge and Data Engineering, (4):344{359, Aug. 1992.The programming language of the system is Complex-Datalog.[13] P. Kanellakis and S. Abiteboul. A logical database query language with object identity and strongtyping. In G. Levi and M. Martelli, editors, Sixth International Conference on Logic Programming,pages 675{692. The MIT Press, 1989.[14] W. Kim, J.-M. Nickolas, and S. Nishio, editors. First International Conference on Deductive and Object-Oriented Databases (DOOD'89). North-Holland, 1990. Also in Data and Knowledge Engineering 5(4),Oct. 1990.[15] M. Kramer, G. Lausen, and G. Saake. Updates in a rule-based language for objects. In L.-Y. Yuan,editor, 18th International Conference on Very Large Databases (VLDB'92), pages 251{262, Vancouver,Canada, 1992.[16] S. Nurcan and J. Kouloumajian. Structured data in structured logic programming environemnts. InInternational Conference on Databases, Parallel Architectures and their Applications (PARBASE'90),page 547, Miami Beach, FL, Mar. 1990.[17] C. Quiming. A deductive database approach for complex objects. Journal of Computing ScienceTechnology (China), 5(3):225{235, July 1990.[18] C. V. Ramamoorthy and P. C. Sheu. Logic-oriented object bases. In Third International Conferenceon Data Engineering, pages 218{225, Los Angeles, CA, Feb. 1987.The authors propose the framework of logic-oriented object bases, i.e., databases that are constructed basedon object model and augmented by mathematical logic. Adopting logic as a formal means for knowledge repre-sentation, they have developed both algorithmic and knowledge-based approaches to relate objects, to evaluatedeclarative queries that involve high-level concepts, and to schedule declarative update requests such that changesto objects can be made consistently. 25 refs.[19] G. Saake. Descriptive speci�cation of database object behaviour. Data & Knowledge Engineering,6(1):47{73, Jan. 1991.Traditional database design methodologies are not appropriate for the speci�c requirements of object-orienteddatabase systems and new database application areas. Apart from semantic complications arising from object-oriented database structures with complex objects, arbitrary data types as attribute domains, or generalizationhierarchies, speci�cation and semantics of dynamic database behaviour has to be of main interest for typicalobject-oriented applications, too. We propose the use of a temporal logic as a speci�cation language for dynamicobject behaviour and point out the formal semantics of such database dynamics speci�cations. A layered con-ceptual database design methodology is presented together with a discussion on design support techniques forbehaviour speci�cations. Finally, implementation aspects are treated. (Author abstract) 48 Refs.[20] P. C.-Y. Sheu and R. L. Kashyap. Query optimization in distributed logic-oriented object bases. Journalof Parallel and Distributed Computing, 8(1):60{71, Jan. 1990.22

We de�ne a logic-oriented object base to be a deductive database based on an object data model. Like con-ventional database, a logic-oriented object base system can be constructed on top of a computer network suchthat distribution of logical and physical components of the system is kept hidden from the users. A distributedlogic-oriented object base di�ers from a distributed relational database in many aspects. For instance, objectsare organized hierarchically and objects are retrieved through customized methods. In this paper we investigatethe problem of query optimization in distributed logic-oriented object bases. (Author abstract) 25 Refs.10 Applications to Knowledge RepresentationThis section introduces some of the application areas which would bene�t from a good OOP+LP merger(actually most of the works mentioned here are not mere uses of the technology, but develop quite good andoriginal ideas for a merger). Here are only applications dealing with representing complicately interconnectedcomplex entities (typically for knowledge-based systems). Other applications are enlisted in the next section.Note that it was not possible to divide articles very well between this and the previous section. Some of thepresented works may be applied for more general software engineering.References[1] G. Antoniou. Logical approaches to structured knowledge bases. In B. du Boulay and V. Sgurev, editors,Arti�cial Intelligence V: Methodology, Systems, Applications (AIMSA'92), pages 47{56. Elsevier SciencePublishers, 1992.[2] M. Balaban. The Generalised-Concept formalism { an object-oriented, logical framework for knowledgerepresentation. In Second International Symposium on Methodologies for Intelligent Systems, Colloquia,pages 179{189, 1987.[3] M. Balaban and S. Strack. Logster { a relational object-oriented system for knowledge representation.Technical Report TR 88-7, SUNY at Albany, 1987.A logic kernel wrapped in an object-oriented interface. Uses the Generalised-Concept formalism [2].[4] R. Brachman. Knowledge representation theory meets reality: some brief lessons from the Classic.In International Conference on Fifth Generation Computer Systems, pages 1063{1065, ICOT, Japan,1992.[5] R. Brachman, A. Borgida, D. McGuinness, P. Patel-Schneider, and L. Resnick. The Classic knowl-edge representation system of KL-ONE: The next generation. In International Conference on FifthGeneration Computer Systems, pages 1036{1043, ICOT, Japan, 1992.[6] F.-a. Chen and Y.-f. Zhu. POKRS: A Prolog-based object-oriented knowledge representation sys-tem. In 1988 IEEE International Conference on Systems, Man, and Cybernetics, pages 285{288, Bei-jing/Shenyang, China, Aug. 1988.The authors introduce the design and implementation of a Prolog-based object-oriented knowledge repre-sentation system (POKRS), which is a developing environment of knowledge systems. The system includes alogic-based object-oriented knowledge representation language based on the combination of object-oriented pro-gramming and logic programming. The language has both the capability of knowledge-base organization fromobject-oriented programming and expressive power from logic programming. The authors describe the languageimplementing method, an algorithm of message receiving and method searching in the inference mechanism, andthe functions of knowledge-base inquiry and maintenance. The system also provides a structural editor as knowl-edge input tool. POKRS has been implemented in Prolog-KABA language on an IBM-PC microcomputer.16 Refs. 23

[7] I. Dimitrov. Systemic programming: a new paradigm for knowledge representation. In Trappl, editor,Cybernetics and Systems. World Scienti�c, 1990.[8] I. Dimitrov. A systems-based fraamework for knowledge representation. In Arti�cial Intelligence IV:Methodology, Systems, Applications (AIMSA'90). Elsevier Science publishers, 1990.An approach borrowed from systems science which is orthogonal to OOP. The KB is represented by means ofa set of interconnected subsystems and speci�cation how to combine the methods of the subsystems in orderto get the system method. Combinations include ones from CLOS: prologues, main part, epilogues, \around"methods and means to notify one's parents/children in the part-of hierarchy. Particularly good for modelingmechanical systems.[9] I. Dimitrov. Systems-based knowledge representation: Relations and methods. In B. du Boulay andV. Sgurev, editors, Arti�cial Intelligence V: Methodology, Systems, Applications (AIMSA'92), pages203{212. Elsevier Science Publishers, 1992.[10] A. Doman. Object-Prolog: Dynamic object-oriented representation of knowledge. In T. Henson,editor, SCS Multiconference on Arti�cial Intelligence and Simulation: The Diversity of Applications,pages 83{88, San Diego, CA, Feb. 1988.[11] G. Q. Huang and J. A. Brandon. Agents: Object-oriented Prolog system for cooperating knowledge-based systems. Knowledge-Based Systems, 5(2):125{136, June 1992.Agents is a multiparadigm language to express the collaborations among cooperating expert systems in an OOlanguage and the deductions inside each agent in a LP language.[12] M. S. Ibrahim and S. W. Woyak. An object-oriented environment for multiple arti�cial intelligenceparadigms. In Second International IEEE Conference on Tools for AI, pages 77{83, Herndon, VA, Nov.1990.EDS/OWL integrates uniformly access-oriented, rule-based and LP paradigms in an extensible OO environment.[13] H. Ito and H. Ueno. ZERO: Frame + Prolog. In Fourth Conference on Logic Programming, number221 in LNCS, pages 78{82, Tokyo, Japan, 1985. Springer-Verlag.Logic programs stu�ed in the slots of frames (though there is also an external general KB of clauses).[14] V. Karakostas and P. Loucopoulos. Veri�cation of conceptual schemata based on hybrid object-orientedand logic paradigm. Information and Software Technology, 30(10):587{594, Dec. 1988.Contemporary conceptual modeling languages are concerned with the represenational adequacy of knowledgeabout a universe of discourse and with the e�cient organization of this knowledge in structures that helpovercome the problems of size and complexity in the modeled reality. In the paper it is argued that a conceptualmodeling language should also facilitate the veri�cation of captured requirements by exercising the conceptualschemata derived from the use of such a language. A conceptual modeling language is presented that is based ona hybrid representation scheme that makes use of object-oriented and logic approaches, and it is shown how thislanguage can be used to verify requirements during the development of information systems. (Author abstract)27 Refs.[15] K. Lee and S. Lee. Object-oriented approach to data/knowledge modeling based on logic. In SixthInternational Conference on Data Engineering, pages 289{294, Los Angeles, CA, Feb. 1990.The object-oriented data model has gained popularity in developing database systems for new applications whichinclude AI, CAD, and OIS. In modeling such applications, it is necessary to capture not only data semanticsbut also knowledge semantics, such as constraints and deductive rules. The authors describe an approach todata/knowledge modeling which combines various modeling features of the object-oriented data model withdeductive capabilities of the deductive database system. 22 Refs.[16] F. Mizoguchi, H. Ohwada, and Y. Katayama. LOOKS: Knowledge representation system for designingexpert systems in a logic programming framework. In International Conference on Fifth GenerationComputer Systems, ICOT, Japan, Nov. 1984. 24

[17] M. Tokoro and Y. Ishikawa. An object-oriented approach to knowledge systems. In InternationalConference on Fifth Generation Computer Systems, pages 623{631, ICOT, Japan, 1984.The architecture has three parts: behavioral (implemented by logic), Knowledge Base, and monitoring.[18] A. Turnheim, D. Raveh, and I. Bogomolni. SOLOG{system object oriented logic development. In 1990IEEE International Conference on Computer Systems and Software Engineering - COMPEURO '90,pages 556{557, Tel-Aviv, Israel, May 1990.A brief overview is presented of an intelligent tool, SOLOG, which addresses the problem of system logicdevelopment. This tool is part of an environment which is used to support rapid prototyping and developmentof complex systems. A case study is presented of logic development with SOLOG. 3 Refs.[19] C. Welsch and G. Barth. Reasoning objects with dynamic knowledge bases. In J. P. Martinsand andE. M. Morgado, editors, EPIA '89: Fourth Portuguese Conference on Arti�cial Intelligence, number390 in LNCS, pages 257{268, Lisbon, Portugal, Sept. 1989. Springer-Verlag.Object-oriented programming has proven its appropriateness for simulating real worlds, in particular for imitat-ing human societies and their ability to solve problems. Object-oriented software is easy to modify and extend,a property of great importance for AI applications. Logic programming on the other hand stands out for itsdeclarative speci�cation language, built-in inference capabilities and clear theory. A well known feature of logicprogramming is the separation of knowledge representation and inference method.We present a framework which amalgamates object-oriented and logic programming. It combines the object-oriented view with the logic formalism. Objects are considered as reasoning entities whose knowledge bases maychange over time. They communicate via messages in order to ask for or to provide information. In response tonew information, an object may have to update its knowledge. Operationally, reactions to messages are infer-ence processes based on Prolog's inference by resolution mechanism. Great importance is devoted to simpleand intelligible semantics of knowledge base alterations being the only way to change states. To this end, anobject's knowledge base is divided into three parts: assumptions, re
ections and reactions, each consisting ofHorn clauses. Only assumptions are allowed to be altered. Knowledge can not be modi�ed while an inferenceprocess is going on, resulting in easy-to-understand and easy-to-formalize semantics.11 Other ApplicationsThe variety of applications listed in this section suggests that OOP+LP will be useful in numerous domains.References[1] J.-P. A. Barthes and Y. Le Noan. Command and control system based on a multi-media object-orienteddata base and a logic programming language. In Annual AI Systems in Government Conference, pages126{132, Washington, DC, Mar. 1989.The authors present two systems, VORAS and G-Base, for storing a large number of objects in a Lisp environ-ment, saving them permanently in secondary storage, and providing shared access. Objects use a simple,
exibleand powerful model of recursive frames called the property driven model. A number of mechanisms have been im-plemented such as browsing, complex queries, object-oriented programming, and deduction, leading to a desiredresult. In utilizing G-Base, the French Navy has discovered two unique advantages of the product: 1) G-Basemanages all information available and presents it in an intelligent way; and 2) the expert system developer canuse the data base objects and relationships without having to build and manage a data base. 35 refs.[2] E. Corsetti, A. Montanari, and E. Ratto. A methodology for an incremental, logical speci�cation ofreal-time systems. In EUROMICRO '90 Workshop on Real Time, pages 87{94, Horsholm, Denmark,June 1990.A methodology for an incremental, logical speci�cation of real-time systems which is based on an object-orientedextension of a logical speci�cation formalism is presented. Such an object-oriented framework makes available25

primitives for identifying, partitioning, and structuring the elements of a speci�cation. In such a way, it supportsa twofold modality of dealing with abstraction, i.e. specialization and decomposition, that provides a guidelinefor speci�cations development. In particular, it provides the speci�er with the ability to deal with di�erent timegranularities within a single speci�cation. That is, it allows the speci�er to describe the behavior and the propertiesof a system and its environment with respect to di�erent time scales, and to switch among them in a suitableway. It also allows an extension of temporal veri�cation and validation of speci�cations taking into account theincremental development and the resulting layered structure of speci�cations. 25 Refs.[3] G. Fleischanderl, G. Friedrich, W. Neijdl, and J. Retti. Integrating logic, object-oriented and proceduralparadigms in a fault diagnosis and monitoring system. In Second International Conference on Industrialand Engineering Applications of Arti�cial Intelligence and Expert Systems (IEA/AIES'89), June 1989.[4] P. Loucopoulos and V. Karakostas. Modelling and validating o�ce information systems: an object andlogic oriented approach. Software Engineering Journal, 4(2):87{94, Mar. 1989.Developing information systems for the o�ce environment of today requires powerful representation formalismsand techniques capable of modeling all o�ce elements. Furthermore, these formalisms should provide appropriatefacilities for the validation of a conceptual schema. In the paper, it is argued that an o�ce modeling approachshould provide semantic account for the various aspects of the schema, as well as facilities for simulating itsbehavior. A conceptual modeling language is presented that combines the object oriented and logic programmingparadigms, and it is demonstrated how this language can be used to validate the conceptual design of an o�ceinformation system. (Author abstract) 24 Refs.[5] B. Muller. Enhancing software engineering capabilities of Prologby object-oriented concepts. In F. Belliand F. J. Radermacher, editors, 5th International Conference on Industrial and Engineering Applicationsof Arti�cial Intelligence and Expert Systems - IEA/AIE'92, pages 127{138, Paderborn, Germany, June1992.[6] L. F. Pau. Context knowledge and search control issues in object-oriented prolog-based image under-standing. Pattern Recognition Letters, 13(4):279{290, 1992.[7] A. S. Watson and S. H. Chan. Prolog-based object oriented engineering DBMS. Computers andStructures, 40(1):11{21, 1991.In this paper we present the primary concepts of PBASE, a prototype object oriented database system. PBASEis intended to support the needs of engineering applications with speci�c reference to structural engineering.To address the engineering requirements the object oriented data model used in PBASE incorporates severalenhancements, including Schema Evolution, Composite Objects, Declarative Methods and Version Management.Schema evolution allows dynamic changes to the class de�nitions and the class lattice. Composite objects supportthe is-part-of relationship between assemblies and components. Declarative methods introduce semantics intoobjects while version management supports the tracking of objects' versions and alternatives as they evolve duringthe design process. (Author abstract) 44 Refs (First International Conference on the Application of Arti�cialIntelligence Techniques to Civil and Structural Engineering - CIVIL-COMP'89, London, England).[8] K. Wiederanders. CSO-Prolog: A language for knowledge-based object-oriented programming, dis-tributed execution and simulation. In European Simulation Multiconference, pages 747{752, Nuremberg,Germany, June 1990.This language is developed at Multilogic Computing Ltd. , Budapest, Hungary. It integrates combined knowledge(functions, clauses), object-orientation (objects, classes), parallel execution (processes) and simulation (modeltime).12 Acknowledgements and NotesRalf Jungclaus and Christo Dichev have kindly sent me some references from their own bibliographicdatabases. 26

A more thorough survey on Logics for LP will be available from menaik.cs.ualberta.ca: pub/oologin August 1993.Vote for the creation of the Usenet newsgroup comp.object.logic!

27

