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1 Introduction

Object-oriented computing emerged in the last decade as an effective means to deal with the “software
crisis” by making the software engineering an easier process. Logic programming on the other hand can be
viewed as an attempt to put (part of) mathematical logic in service to programming. LP is widely used for
applications where it is not quite clear what direction the computation will take (what will be the inputs
and what the outputs) but the relations among the concepts in the domain are clear This is the case for
some Al tasks, prototypical programming, etc. LP, however, largely misses the needed software engineering
devices (modules, information hiding, reuse etc.) to make it a viable choice for large programs.



It would be very useful to integrate OOP and LP in a seamless and natural way in order to exploit the
synergism between the two. An important issue in such an integration would be to preserve the clarity of the
two paradigms and merge them organically so that not to get an ad-hoc conglomerate of unrelated concepts
ala PL/1. The two paradigms are equally basic and self-important so it would not be appropriate to make
one of them the master and the other the slave of such a merger.

A preliminary literature survey of the area shows that right now OOP+LP is a hot topic. Without much
effort it was possible to compile a bibliography of about 180 items; there are at least 50 different mergers
and/or languages proposed. Some of them are approaches one would like to avoid: implementing OOP in
LP or LP in OOP (often very inefficiently), binding the OOP+LP merger to Constraint LP, Concurrent LP
or Deductive and OO Databases (whereas the merger has its own importance) etc. But there are also basic
ideas which seem very attractive: represent message passing by unification, methods by the set of clauses
comprising a predicate, inheritance by extending a predicate with clauses from another logic theory (world,
module) ete.

The main obstacle to a merger seems to be that the LP paradigm does not support the notion of mutable
state: a logic variable is either free or bound once and for all (logic possesses the property of referential
transparency). When represented in LP, most often state is carried by predicate’s parameters. The task of
defining formally what an object is (devising logics to model QO features) seems most important at present
because there is no widely accepted formalization yet and this hinders the smooth implantation of OOP into
LP.

I have used the following sources to compile this bibliography: Computer and Control Abstracts (every-
thing from 1989 to 1992), ACM Guide to Computing Literature (1991 and 1992; this is hardly usable as a
reference), online databases COMPENDEX (1987-1992) and INSPEC (1988(7)-1992; this is most compre-
hensive but T had hardly enough access to it). T have also searched Index to Scientific Reviews and got some
titles but haven’t included them yet. And of course, I have scanned the reference lists of the articles I have
read.

I have tried to outline the boundaries of subareas in the OOP+LP area and to figure out what is already
done and what is still to be done. However the resulting division is imperfect for a number of reasons:

e it 1s highly subjective;
e sometimes a paper falls equally well under two or more divisions;
e papers which I have not read and which have undescriptive title inevitably are classified wrongly;

e I have tried not to split related work by the same author or team: all related articles are put in the
section which best fits the most important of them.

As the title says, this is a not-very-much annotated biblography. It is not completed yet both in the
sense that there are titles I would like to include and, more importantly, I have read only about 30 or 40 of
the articles. My comments are rarely longer than five lines; the ten-line abstracts which you can see with
some of the articles have come form COMPENDEX (and are copied without permission, T guess). Generally
all annotations which do not end on “n Refs” are written by me, but about 10% of them (the shortest ones)
are just “abstracted abstracts” from CCA and have little value. Now you may think that my annotations
are very short and make little sense, but this is because the life is short; and I made it for myself, not for
you :-). However corrections, additions and suggestions for reorganization are most welcome at the address
above. I am not qualified to be and I won’t serve as a referee of all these articles, only with a joint effort
this bibliography could possibly have some value (not that T got a lot of comments yet (.

2 Logics to Model Object-Oriented Notions

This is the subtopic I deem most important at present because we still don’t have a clear logical understanding
of what an object is (at least T don’t; maybe after reading all this T will gain one :-). Object-oriented
computing enjoys most wide acceptance but no semantics for it does yet.



It is not necessarily the case that having a good logic of objects will buy us a good merger of logic
programming with OOP: the particular logic may have little practical value. So having a clear logical
semantics of OOP is probably not a sufficient condition for a good merger, but definitely it is a necessary
one.

Logics which deal only with inheritance or modules for LP are in the next section. Here are logics which
aim at an overall treatment of objects and/or which try to model mutable state. Some of the the logics
included here should probably go to the section Concurrent LP.

A couple of ecclectic remarks about the subarea follow: An early work on OO logic is Maier’s O-LOGIC
[40, 41]. Later it was extended and refined in Kifer’s F-LoGrc [31, 33] and Chen and Warren’s C-LoGIC [5].

Goguen and Meseguer has done a considerable early work falling between this subarea and the one
described in the next section [19, 20].

Another direction is the application of Linear Logic to the problem: Andreoli and Pareschi’s LINEAR
OBJECTS [2, 3,1, 4, 5].

A recent approach by Meyer and Wieringa [45, 53] and by Jungclaus [4, 26] (influenced by Ehrich,
Fiadeiro, Saake and Sernadas) is to use fully the developments in Abstract Data Types and only add object
identities and Dynamic Logic (a form of Modal Logic with modalities formed by events: message sends to
objects) to model changing state.

Uustalu [51] uses Modal Logic tro model inheritance and regards evolution of state the same as inheritance
of behavior: state is inherited from the previous time instant. This approach is somewhat similar to Pimentel
[46].

By the way, should we talk about an “Italian school” in this subarea? (Andreoli, Brogi, Lamma, Leonardi,
Mello, Pareschi)
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A denotational semantics for SMALLTALK-80 using continuations to model side effects.

A. Sernadas, J. Fiadeiro, C. Sernadas, and H.-D. Ehrich. The basic building blocks of information
systems. In E. Falkenberg and P. Lindgreen, editors, Information System Concepts: An In-Depth
Analysis, pages 225-246, Namur, Belgium, 1989. North-Holland.

B. Stavtrup. A Proposal Regarding Invisible Logic For Object-Oriented Languages. Journal of Object-
Oriented Programming, 5(1):63-65, 1992.

The author makes a proposal to the ANST C++4 Committee for an extension of the operator-overloading facilities
of C++ so that whitespace can also be used for this purpose. [ was halfway through the article when I asked
myself: “Wait a minute, what month is this issue?”. It turned out to be April (now read aloud the first letters
of the title). Stavtrup is, of course, a screwed-up variant of Strostrup.

T. Uustalu. Combining object-oriented and logic paradigms: A modal logic programming approach.
In O. L. Madsen, editor, Furopean Conference on Object-Oriented Programming (ECOOP’92), pages
98-113, June 1992.

Based on the author’s MS Thesis at Tallinn Technical University, Estonia. First a brief account of existing
attempts to integrate OOP and LP is given and a categorization is provided. Then the author describes three
modal logics (MU, MU’ and MU”) which provide for different inheritance modes: overriding/cumulative, syn-
tactic/semantic. Objects can provide/receive iheritance selectively for each predicate (method). State change is
treated exactly as inheritance: objects inherit their state from the previous time instant in the same way they
inherit (part of) their behavior from their ancestors in the inheritance lattice. Thus a two-dimensional modal
logic, 2MU | is proposed.

M. Wand. Type inference for record concatenation and multiple inheritance. In Fourth Annual Sympo-
stum on Logic in Computer Science, pages 92-97, Asilomar Conference Center, Pacific Grove, CA, June
1989. IEEE Computer Society Press. (An extended version appeared in Information and Computation,
93(1):1-15, July 1991).

We show that the type inference problem for a lambda calculus with records, including a record concatenation
operator, is decidable. We show that this calculus does not have principal types, but does have finite complete
sets of types: that is; for any term M in the calculus, there exists an effectively generable finite set of type
schemes such that every typing for M is an instance of one the schemes in the set.

We show how a simple model of object-oriented programming, including hidden instance variables and multiple
inheritance, may be coded in this calculus. We conclude that type inference is decidable for object-oriented
programs, even with multiple inheritance and classes as first-class values.

R. J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel, M. Kifer,
and Y. Masunaga, editors, Second International Congress on Deductive and Object-Oriented Databases

(DOOD’91), number 566 in LNCS, pages 431-452, Munich, Germany, Dec. 1991. Springer-Verlag.
The author first argues that all requirements specified in the OODB Manifesto except object identity and ones



stemming from it (mutable state etc), are accounted for by work done in Abstract Data Types and Equational
Order-sorted logic. After that he describes an extension to account for these notions: dynamic logic. Its central
concept 1s the one of object identity; it models changing state by a modification of the possible worlds semantics
where modalities are created by a special kind of entities: events. The whole system is called Conceptual Model
Specification Language (CMSL). See also [45].

[54] M. I. Wolczko. Semantics of object-oriented languages. Technical Report (and PhD Thesis) UMCS-88-
61, Department of Computer Science, University Manchester, May 1988.

3 Logics for Inheritance Systems;
Modules (Worlds) for Logic Programming

Work on modules for LP (multiple logic theories in one program) and inheritance for logic theories is the
earliest effort to buy structuring concepts to LP: there has been “worlds” even in the early Prolog II of
Colmerauer. Another form of inheritance which is considered in LP is inheritance amongst the data elements
(terms); it modifies the way unification works. There is a wealth of theories of inheritance available in the
literature.

Although in OOP modules and inheritance are completely orthogonal notions, in LP they are kind of
mixed (probably because LP is badly missing both). This is why they are mixed in this section.

The use of the word “worlds” for LP modules is probably just a coincidence with its use in the term
“possible worlds”, but nevertheless various forms of Modal Logics are widely used to formalize notions of
modules and inheritancs.

Monteiro and Porto seem very knowledgeable in this area.
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nonmonotonic inference rules. The hierarchy is viewed as a set of atomic propositions using the two relations
isa (subsumption) and nisa (nonsubsumption). General results concerning systems of nonmonotonic inference
rules can immediately be applied to the proposed inference system. 7 Refs.
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The first step on the way to objects are abstract types (eventually polymorphic). In the theoretical part of the
article types are equated with their extents but in practice the system infers them constructively as a Descartes
product, union or intersection of known types. For logic variables the type of the variable is a subtype of the
intersection of its types in all its occurences in a clause. A further objective is to specialize types using constraints.
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D. Touretzky. The Mathematics of Inheritance Systems. Pitman, London, 1986.
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There are many confused meanings on the use of ISA (is-a), AKO (a-kind-of), and ISPART (is-part) relations.
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Languages Integrating OOP and LP
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Languages which are heavily bound to Concurrent LP or Constraint LP are grouped in the corresponding

sections.

Aft-Kaci [1] and Zaniolo [37] are almost “classics” on the subject. Tyugu [31] has done some really early

work in Tallinn, Estonia. McCabe [22] is the only book on the OOP+LP subject known to me. Conery
[5, 4, 6] has got a really nice idea about how to model mutable state by literals which pass from one side of
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The paper describes two languages: OOLP and OOLP+ which are translated to PROLOG.

B. Freeman-Benson. KALEIDOSCOPE: Mixing objects, constraints, and imperative programming. In
ECOOP/OOPSLA’90, Ottawa, Ontario, 1990. (SIGPLAN Notices 25(10):77-88, Oct. 1990).
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permits recursive reasoning and backtracking on predicates that are defined on different domains. The design
concepts and implementation of this approach are presented and its application is illustrated by an example.
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Act 1. In IJCAI’81, pages 933-939, 1981.
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place) description of actors: all actor behaviors go through sent. The target is an actor generally of the type
list(type, acquaintances). Delegation: when an actor cannot handle a message, it passes it to its proxy. The
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versity of London (1988). It describes the LoGic & OBJIECTS extension of IC-PrRoLoOG. The language provides
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ENcoMPASS is an environment that supports software development using formal techniques similar to the Vienna
Development Method (VDM). In ENcOMPASS, software can be specified using the PLEASE family of executable
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having C++ rather than ADA as its base language, by having an operational as well as declarative semantics,
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reasonable detail, and give an example of development using the language. 24 Refs.
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Data elements in UTOPIST (attributes of objects) can be bound by both inter- and intra-object relations. These
relations are used by a propositional theorem prover to generate a prooof that it is possible to compute a certain
datum given some other data. This (constuctive) proof is used to synthesize a program which computes the
datum. So PRIZ has a quite non-standard logic component: compile-time proof and program generation in-
stead of run-time clause resolution. These technique are called Propositional Logic Programming and Structural
Program Synthesis. NUT is a prototype-based (as opposed to class-based) language: any object can be used
as a template (type) for a new object (and of course as a component of a new object). Limited polymorphism
is supported through a generic type (any) . It is notable that some of the modern programming paradigms
(constraint programming, object-orientation, employing logic in computation) have been considered so early.
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Conference on Fifth Generation Computer Systems, pages 257-268, ICOT, Japan, 1992.
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List-of-methods. Each method is a set of independent clauses which an use the instance variables and delegate
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responsibilities through inheritance. Mutable state is modeled by assert/retract (modification of the logic
program).

Implementation-Oriented Developments

I have gathered in this section papers dealing with implementations of OOP in LP or LP in OOP, treating
specific implementation isues, discussing various environments, describing what seem to be not very complete
and/or general languages, etc.; said shortly, papers I deemed not fitting very well in the previous section.
The distinction however is neither very clear nor principled, so generally one should look in both sections.
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Oriented Programming). PROLOOP is the essential component of a PROLOG-based environment (PROVIRO) to
develop knowledge and rule-based expert systems. PROVIRO consists of a series of pragmatic components as to
testing (PROTEST), knowledge version control (PROVERS), self actualization of the documentation (PROS-
ELF), etc. The potential of PROLOOP stems from its simplicity. This simplicity makes PROLOOP easy to use and
to extend, allows to achieve a high degree of reliability of PROLOOP programs, increases their maintainability,
etc. Because of its artlessness, PROLOOP is also a good example for understanding and teaching object-oriented
programming. Nevertheless, PROLOOP possesses sufficient expression power which we demonstrate by including
non-trivial examples produced in a real project. (Author abstract).

E. P. Stabler, Jr. Object-oriented programming in PROLOG. Al Ezpert, pages 46-57, Oct. 1986.

S. Tyszberowicz and A. Yehudai. OBSERV - a prototyping language and environment combining object-
oriented approach, state machines and logic programming. In Twenty-Third Annual Hawaii Interna-
tional Conference on System Sciences, volume II: Software Track, pages 247-256, Kailua-Kona, HI, Jan.
1990.

The OBSERY methodology for software development is based on rapid construction of an executable specification
(or prototype) of a system, which may be examined and modified repeatedly to achieve the desired function-
ality. The objectives of OBSERV also include facilitating a smooth transition to a target system and providing
the means for reusing specification, design, and code of (sub)systems. Of particular interest is the handling of
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embedded systems; which are likely to have concurrency and real-time requirements. The OBSERV prototyping
language combines several paradigms to express the behavior of a system. The object-oriented approach provides
the basic mechanisms for building a system from a collection of objects, with well-defined interfaces between
them. Finite-state machines are used to model the behavior of individual objects. At a lower level, activities
that occur within objects are described with the logic-programming paradigm, thus allowing a nonprocedural
description when possible. An attempt has been made to provide flexible tools for executing (simulating) the
prototype being built, as well as for browsing and static checking. The current implementation of the tools is
window-based but not graphical. 26 Refs.
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Formal Specification of Object-Oriented Systems

A number of OO Software Engineering methodologies has been proposed (e.g. Wirfs-Brock, Wilkerson and
Wiener; Rumbaugh; Booch; Coad and Yordon), but most of them lack rigor. This section includes articles
which are aimed to a formal specification of OO systems.
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[8] F. J. van der Linden. Object-oriented specification in COLD. Technical Report RWR-508-re-92007,
Phillips Research Labs, Eindhoven, Netherlands, Sept. 1992. f1linden@prl.phillips.com.
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7 Connections to Concurrent Logic Programming and Actors

Concurrent LP is intimately connected to OOP+LP, I believe, because of a reason more pragmatic then
causal: when one seeks to write really large programs in LP, one has to consider both concurrency (in order
to achieve speed) and object orientation (in order to cope with the complexity of the application). On the
other hand, because objects are inherently distributed, it is natural to describe distributed systems in terms
of objects/actors. However OOP+LP has importance in itself: it can be applied very profitably in sequential
programming as well.

This section contains articles both theoretical and dealing with programming languages. There is a lot
of articles on Concurrent LP in the most current literature which I have omitted.

A lot of work in this direction has been done in Japan under the auspices of the Fifth Generation
Computer Systems Project [1, 2, 6, 8, 9, 10, 16, 17, 18, 21, 22]. Another author to be mentioned here is
Kahn.
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8 Connections to Constraint Logic Programming

Since the definition of the Constraint Logic Programming (CLP) Scheme by Jaffar and Lassez CLP has
underwent a very fast development. It may be interesting to note that the common area between Concurrent
LP and Constraint LP has already been “institutionalized”: Concurrent Constraint Programming.
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9 Deductive Object-Oriented Databases

This area is relatively young: the first conference on it was held in 1988 [14]. Tt is highly correlated to
OOP+LP because these databases have to have some database programming language, right? But once
again, OOP+LP is a self-important area which may have quite general application.
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We define a logic-oriented object base to be a deductive database based on an object data model. Like con-
ventional database, a logic-oriented object base system can be constructed on top of a computer network such
that distribution of logical and physical components of the system is kept hidden from the users. A distributed
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are organized hierarchically and objects are retrieved through customized methods. In this paper we investigate
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10 Applications to Knowledge Representation

This section introduces some of the application areas which would benefit from a good OOP+LP merger
(actually most of the works mentioned here are not mere uses of the technology, but develop quite good and
original ideas for a merger). Here are only applications dealing with representing complicately interconnected
complex entities (typically for knowledge-based systems). Other applications are enlisted in the next section.
Note that it was not possible to divide articles very well between this and the previous section. Some of the
presented works may be applied for more general software engineering.
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Other Applications

The variety of applications listed in this section suggests that OOP+LP will be useful in numerous domains.
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Developing information systems for the office environment of today requires powerful representation formalisms
and techniques capable of modeling all office elements. Furthermore, these formalisms should provide appropriate
facilities for the validation of a conceptual schema. In the paper, it is argued that an office modeling approach
should provide semantic account for the various aspects of the schema, as well as facilities for simulating its
behavior. A conceptual modeling language is presented that combines the object oriented and logic programming
paradigms, and it is demonstrated how this language can be used to validate the conceptual design of an office
information system. (Author abstract) 24 Refs.
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A. S. Watson and S. H. Chan. PRrRoLOG-based object oriented engineering DBMS. Computers and
Structures, 40(1):11-21, 1991.

In this paper we present the primary concepts of PBASE, a prototype object oriented database system. PBASE
is intended to support the needs of engineering applications with specific reference to structural engineering.
To address the engineering requirements the object oriented data model used in PBASE incorporates several
enhancements, including Schema Evolution, Composite Objects, Declarative Methods and Version Management.
Schema evolution allows dynamic changes to the class definitions and the class lattice. Composite objects support
the is-part-of relationship between assemblies and components. Declarative methods introduce semantics into
objects while version management supports the tracking of objects’ versions and alternatives as they evolve during
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This language is developed at Multilogic Computing Ltd. ; Budapest, Hungary. It integrates combined knowledge
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A more thorough survey on Logics for LP will be available from menaik.cs.ualberta.ca: pub/oolog
in August 1993.

Vote for the creation of the Usenet newsgroup comp.object.logic!

27



