
Mutable Object State for Object-Oriented Logic Programming:A SurveyTechnical Report TR 93-15�Vladimir AlexievyDepartment of Computing Science, University of Alberta615 GSB, Edmonton, Alberta T6G 2H1email: vladimir@cs.ualberta.ca16 August 1993AbstractOne of the most di�cult problems on the way to an integration of Object-Oriented and LogicProgramming is the modeling of changeable object state (i.e. object dynamics) in a particularlogic in order not to forfeit the declarative nature of LP. Classical logic is largely unsuitablefor such a task, because it adopts a general (both temporally and spatially), Platonic notion ofvalidity, whereas object state changes over time and is local to an object. This paper presents theproblem and surveys the state-of-the-art approaches to its solution, as well as some emerging,promising new approaches. The paper tries to relate the di�erent approaches, to evaluate theirmerits and de�ciencies and to identify promising directions for development.Keywords: Object-Oriented Logic Programming, mutable object state, survey.1 The Problem: Dynamics of ObjectsFrom the research literature on integration of Object-Oriented Programming (OOP) and Logic Pro-gramming (LP) one gets the impression that the most obstinate di�culty on the way to such anintegration is the following problem: how to represent (model adequately) state change in a declar-ative and logically sound way. On the other hand, the structural aspects of OOP (encapsulation,classes, inheritance, polymorphism and aggregation) can be accommodated in the LP paradigmwith relative ease. Representation of state (object dynamics) and representation of structurisa-tion (object statics) are largely orthogonal, but in some cases they interfere with each other. Sonotwithstanding that the emphasis of this paper is on mutable state (for a general survey of OOLPsee the one by Davison [22]), in some cases I discuss static aspects as well.Classical logic emerged from studies in the foundations of mathematics, and thus it is designedto reason about static things: relations, functions etc. Correspondingly predicate calculus adoptsa notion of truth which is:�Available by anonymous FTP from ftp.cs.ualberta.ca: pub/TechReports/TR93-15/state.ps.Z or pub/oolog/state.ps.Z. Comments and corrections are most welcome.ySupported by a University of Alberta PhD Scholarship.1

� Global: all the consequences of a logic theory are (conceptually) known to hold (this is namedlogical omniscience).� Eternal (universal in time): a formula is either true or false, independent on the time it isevaluated. Furthermore, the same holds for terms (data items): a logic variable (as e.g. inProlog), once bound, cannot take on another value (except on backtracking). The propertythat a formula or a part of it always has the same meaning, no matter where and when it isevaluated, is called referential transparency .To the opposite, object encapsulation and the dynamics of objects make object state:� Local: the state of an object is its private property and no other object have access to itexcept by asking the owner using message passing.� Time-dependent: in a system which should be able to model the dynamic world, object statechanges over time.This renders classical logic unsuitable for state change representation. There are a number ofproposals for a logic of action and change, but none of them has ever become the core of a databaseor a logic programming system. On the other hand, classical predicate calculus is the foundationof queries in Relational and Deductive Databases and of Logic Programming, both in theory andin practice.In addition to this general unsuitability of classical logic for the modeling of dynamic systems,there is a number of other \side" problems with the representation of change in LP which arebetter understood in the context of the respective approaches they appear in and are covered in therespective sections below. The following problem however is su�ciently general to be mentionedhere: object-orientation is often used to implement open, highly interactive systems which do someinput (perception), then some computation, then some output (actuation) and so on in a loop.Therefore those are reactive systems. Even if not open to the external world, a large object-orientedsystem consists of a large number of component objects and their interactions . Examples of suchsystems are user interfaces, operating systems, simulations, communication software, industrialcontrol and robotics applications, etc. To the contrary, LP-based programs are transformational ,in the sense that they get some inputs and produce (a set of) corresponding outputs which makea certain I/O relation true (one of the strengths of LP is that one can exibly apply inputs; theprogram is like a black box with bidirectional pins which can serve as both inputs and outputsaccording to demand).A complex object has a correspondingly large state information; an object in an OOLP programshould store a number of its previous states for backtracking purposes. It is a very subtle matterto determine the exact amount of backtracking information (state history) to be stored betweenmessage sends. For example Conery in [19, p.433] writes: \Is there an operation analogous to cutthat commits the system to a new object state and allows us to discard the history of some objects?How will this interact with the top-level user dialog?" The question is even more complex if thereare more stimulus sources than a single user.A sample proposal for the solution of this problem, which I deem impractical is as follows [73]:upon a message send a logical deduction process is initiated during the course of which every objectcomputes its new state, but does not commit updates and responds to queries with its old state.After that a special noti�cation is broadcasted globally and all objects move to their new computed2

states. In other words, during the deduction process the database is \frozen" and moves to a newstate synchronously, all at once. This convention greatly simpli�es the logical semantics, but con-tradicts the very spirit of a distributed system of autonomous objects and introduces an unneededdistinction between \deduction" and \update"; also it is not clear what entity the programmershould \authorize" to broadcast the global \move to the new state" message and how this messagewill reach all its recipients.The survey attempts to explicate the relations (sometimes even unintentional) which existamong the di�erent proposals. The emphasis in this survey is on e�cient implementation of statechange, one which would be suitable for the lowest fundamental level of a general OOLP language.The following approaches are covered in the sections below: Assert/Retract, Declarative DatabaseUpdates and Transaction Logic, Modal and Dynamic Logics, Perpetual Objects, Logical Objectsand Linear Objects, Linear Logic, Rewriting Logic and MaudeLog.2 Assert/Retract: Non-Logical State ChangeThis section discusses a \cover under the carpet" approach to our problem, namely the approach ofnot addressing the problem at all. This approach is rather wide-spread in early integration proposalslike the one by Zaniolo [79], and in proposals which treat objects as encapsulated labeled collectionsof clauses (local theories) like McCabe's L&O [59] (class templates) or Ishikawa and Tokoro'sOrient84K [38, 39] (an object-based OOLP language). In the last two languages mentioned, anassignment operator is introduced for convenience and e�ciency, but the logical semantics is thesame as for assert/retract. Bancilhon in [9, p.19] talks about \clean queries and dirty updates"and argues that since all known systems which have a clear (�x-point) semantics do have a semanticsonly for queries but not for updates, we should accept this as a matter of fact and treat updatesas destructive assignments.Many of these approaches are based on the destructive modi�cation of the logic program throughthe assert and retract operators of Prolog which insert and delete a clause from the programrespectively. There are many problems with assert/retract which motivate e.g. Warren [72]to talk about \The evils of assert" and which make programming using these operators a rathernon-declarative e�ort:� They depend on the sequential execution of the literals in a goal (which is peculiar to Pro-log), thus they do not respect the commutativity of logical conjunction.� Theory change involves higher-order notions, which however with assert/retract remainhidden and implicit. Metalanguage (in which Prolog programs are written) and object-levellanguage (in which Prolog talks about real-world objects) are mixed in a non-disciplinedway. Since no distinction is made between the name of a formula (the argument of assert/retract)and the formula itself, this leads to strange e�ects such as::- assert(p(X)).means \Assert that for all X, p(X) holds" (a universally quanti�ed assertion), whereas:- p(X). 3

means \Does there exist an X such that p(X) holds" (an existentially quanti�ed query).� assert and retract do not undo their e�ects on backtracking, leaving an unwanted \residue"in the database. This makes it hard to use them for transaction programming where thechanges should only be committed in the case when the transaction succeeds.There are Prologs featuring fully backtrackable assert/retract, e.g. Object-Prolog[24]. In SicstusProlog one can implement backtrackable assert/retract using a builtinmeta-predicate undo/1 whose term argument is executed on backtracking.1. For examplebacktrackable retract will be:b_retract(X) :-retract(X),undo(assert(X)).Another problem (which however is not inherent to assert/retract) is that changes are doneglobally to the database and are not encapsulated in a local part pertaining to a single object.Although this approach is completely unsatisfactory, there are surprisingly many commercialOOLP systems which adopt it. This can be seen as a challenge to the academia to provide bettertechniques for modeling object state. For example the vendors of BIM-Prolog say somethingto the e�ect that [31] \We could not use ine�ective approaches based on maintaining completehistories of object states and we just could not wait for something better to develop".3 Declarative Database Updates; Transaction LogicOne of the fundamental problems in the area of Deductive Databases is: how to incorporate newknowledge in the database, preserving the consistency of the updated database (declarative databaseupdates). The issue of dynamic DB updates becomes even more important with the developmentof Deductive and Object-Oriented Databases because of the inherent dynamic nature of objects.A lot of research has been performed in this area and one would expect that most of this researchshould be relevant to our problem. However, there are two potential misunderstandings whichrender most of the research inapplicable to our case:� There is a di�erence between updating a declarative (deductive) database and updating aconventional or object-oriented database in a declarative way. The former is relevant in thearea of Deductive Databases and it is the harder problem of the two, because it may involveupdating general logic theories and therefore the whole suite of non-monotonic problems, etc.The latter is more relevant to conventional OOP and to mergers of OOP and LP, becauseusually object attributes (the dynamic parts of an object) are simple data terms and/oratomic formul�. So the majority of the work in DB updates is too general to be applicableto OOLP: one would not like to deal with non-monotonicity issues for a simple change of anattribute which should be done very e�ciently.� There is a big di�erence between updating a database and revising it [51]. The formermeans changing the database in order to reect a change in the real world, the latter means1As pointed to me by Bernhard Pfahringer 4

incorporating newly acquired knowledge about a static world. The di�erence is that revisioninvolves reassessment of the possibility of each of the models of the old theory, because someof them may turn out to be impossible in the light of the new knowledge; whereas updatecan never change the set of possible worlds of the old theory, it merely moves the system to anew set of possible worlds. For example, an inconsistent theory can never be made consistentusing update [51], which is not the case if revision is used. Technically this involves a revisionof the Alchourron-G�ardenfors-Makinson (AGM) rationality postulates for update operators.Informally, it means that the non-monotonicity issues involved are quite di�erent for revisionand for update, generally being simpler for update). Although many of the works are declaredto be devoted to database updates, in fact most of them actually deal with revision.With this precautions in mind, I turn now to a brief review of the declarative updates �eld.2Typical approaches which I deem impractical for the problem in hand include: allowing onlyadditions but not deletions, with newer knowledge overruling inconsistent older knowledge [68];maintaining a complete history of the database, as in the object-oriented version of Kowalski'sEvent Calculus [54, 53] developed by Kesim and Sergot [52], etc.Two simple concepts predominate in the work in this �eld. One is the application of modal logicand the possible worlds semantics: changing a logical theory leads to a new (set of) model(s) forthe changed theory. Another is the concept of closeness : the changed database should maximallyresemble the old one, involving minimal change. Two variations are possible here: closeness canbe interpreted in either a syntactic (minimal change of the set of formul�), or a semantic sense(minimal change of the set of possible worlds). The work of Winslett [75, 76] is foundational in thesense that she �rst gave a generally accepted formalization of the notion of minimal change.Fagin, Ullman, Vardi and Kuper [26, 25] has done some early work on updating databaseswith integrity constraints and the related problem of view updates : given a (possibly non-injective)mapping of the database state (a view), map an update of this view back to an update of thebasic stored facts. An elementary (under a particular de�nition) update of a view may turn to benon-elementary for the stored database. Usually a number of views will be needed to disambiguatehow to perform a basic update.Abiteboul and Vianu [2] developed a number of declarative languages for database updates andobtained some results on expressiveness and complexity, but they were only concerned with theend result of executing an update, and not with the execution process itself. There are syntacticrestrictions on the ways transactions can be constructed from simpler ones, and no transaction\subroutines" are allowed.Chen [13] developed a calculus and an equivalent algebra for specifying and executing updates(restricted to insertion and deletion of single tuples), much in the tradition established for explo-ration of query languages.A work which stands out with its very di�erent approach to the problem is Transaction Logic(T R) of Bonner and Kifer [10]. They opt not to deal with the whole spectrum of non-monotonicityissues related to database updates and assume that a transition base of elementary updates, specify-ing the set of possible transitions for each update, is given beforehand (usually through an algorithmwhich can enumerate it). In this way T R manages to be both very general (di�erent models ofupdates can be accommodated in it), modular (a particular model of updates can easily be plugged2Caveat: The paper is far from comprehensive in this respect. For more comprehensive surveys see [1] or [57]5

in), and at the same time have a sound semantics (all the di�cult non-monotonicity issues areencapsulated in the transition base and do not spoil the rest of the semantics). The formul� of T Rare database transactions built up from elementary updates which may succeed or fail, and T R fo-cuses on their compositional properties. T R interprets all the classical logic connectives in terms ofcomposition of transactions (e.g. conjunction constrains two transactions so that they both shouldrun along the same execution path, disjunction corresponds to non-deterministic choice, etc.), andin addition introduces serial conjunction, denoted
, which composes two transactions sequentiallyand its dual (under the de Morgan laws) serial disjunction, denoted �. Also, left and right serialimplications are de�ned (� def= � :��) def= :� � which mean \Whenever � happens, it must be immediately preceded (resp. followed) by ". InT R the di�erence between a transaction and a query is blurred, because a successful transactionmay both do some changes to the database and bind some logic variables, thus returning ananswer. This is corresponds well to the practice in LP, and is important for modeling methodsin OOP where a method can both return a value and have side e�ects. Also, both hypotheticalreasoning and committed transactions are possible in T R. Other features which are importantfor database programming, like non-deterministic and bulk updates, non-deterministic sampling,static and dynamic integrity constraints on transaction execution, etc., are also provided for.A major advantage of [10] is that it develops a sound and complete proof theory of the Hornfragment of T R which is suitable for Logic Programming. It turned out that it is awkward toformulate the proof theory of full T R in T R itself, so a general logic of state change [11] is beingdesigned for this purpose. The proof theory can both reason about transaction execution andactually perform this execution. Two dual proof systems are presented, for normal execution andfor reverse execution (it is assumed that for every elementary update the transition base, given thecurrent state, can compute both the successor state(s) and the predecessor state(s)). These twoproof systems are pro�tably linked together for hypothetical reasoning (\What would happen ifsuch and such update is performed").A shortcoming of T R is that its model theory is somewhat complex: truth is de�ned on pathsover states, each state being a set of possible worlds. Nevertheless, by focusing in the right problem(the properties of combining updates into transactions, not the properties of updates themselves),T R presents a rich and computationally meaningful framework for updates.In summary, some of the approaches in this area seem too \heavy-weight" and concerned withreasoning about updates instead of per se performing updates to be useful for an e�cient implemen-tation at the lowest, fundamental level of a general OOLP language. Nevertheless these results areimportant to consider if a language closely tied with a Deductive and Object-Oriented Databases(resp. a database programming language), is seeked.4 Modal and Dynamic LogicsThere is a number of logics of action developed either in the Arti�cial Intelligence communityor for providing a formal semantics of the execution of imperative programs. Those developedfor AI applications (e.g. planning) are usually too general and cumbersome to be the basis of an6

OOLP system, either because they represent actions as nested terms and reason explicitly aboutthe current global state of the world (e.g. McCarthy's Situation Calculus and McCarty's Logicof Action), or because they focus on the temporal side of actions (e.g. Allen's logic of temporalintervals).A number of formalisms for semantics of imperative programs stems from Modal Logic andKripke's possible worlds approach. One of the �rst was Floyd-Hoare's program logic. Then comesPratt's Process Logic [66, 34]. Here I describe Dynamic Logic [33] and its use for the semantics ofobject state change.The language of Dynamic Logic consists of two kinds of expressions: formul� �; ; : : : andprograms �; �; : : : (programs are deemed non-deterministic). Formul� are constructed from simplerformul� by the usual logic connectives, and in addition from a formula and a program by a coupleof dual operators [�]� and h�i� which correspond to the usual modal operators \necessarily" 2�and \possibly" 3�. (In fact Dynamic Logic can be seen as a kind of multi-modal logic, wheremodalities are formed by programs.) The semantics of these operators is de�ned as follows: if � isa formula, � is a program and w is the current program state (world), thenw j= [�]� i� w0 j= � for every successor w0 of ww j= h�i� i� there exist a successor w0 of w such that w0 j= �Here \w0 is successor of w" means that the program � leads (or may lead, if it is actually non-deterministic) from the state w to the state w0. Correspondingly, in �! [�] , the formul� � and are Dijkstra-style pre- and postconditions of � respectively.Programs are constructed from elementary programs much like regular expressions using thefollowing forms: �; � sequential composition� j � non-deterministic choice�� in�nite iteration (Kleene star)The iteration construct �� means \execute � zero or more times". The set of elementary programsusually consists of x := e assignment of a term to a variable�? test of a program-free formulaThe test �? succeeds when � is true without changing the current state (the test is side-e�ect free),and aborts the program if � is false (i.e., there are no possible successor worlds).Non-determinism turns out to be very useful, because e.g. an if-then-else construct can bede�ned as if (�; �; �) def= (�?;�) j (:�?; �)Sometimes Context-Free Dynamic Logic is considered (instead of Regular DL), where the lan-guage of DL is enriched with variables for programs (program names), programs are formed fromelementary ones using a context-free grammar, and thus (mutual) recursion can be expressed.Typical axioms for Dynamic Logic include[x := e]� � �fx=eg[�?] � �! [�; �]� � [�][�]�[� j �]� � [�]� ^ [�]�7

and the axioms of Modal Logic.Although Dynamic Logic has been designed from the very beginning as a logic of imperativeprograms and state change, there is relatively small number of attempts to use it for the descriptionof object state dynamics. In the work of Meyer and Wieringa [64, 74], Dynamic Logic is combinedwith Abstract Data Types and Order-Sorted Logic in a formal speci�cation system called Concep-tual Model Speci�cation Language. ADTs (see also Section 8) are used to formalize structuredobject values, whereas DL captures object dynamics. The connection between the two relies heav-ily on the use of object identi�ers. A similar series of works by Jungclaus, Saake, Sernadas andHartmann [43, 42, 41] emphasizes dynamic aspects of object interaction and develops a languagecalled Oblog+. Burandt [12] in his diploma thesis has started work in the same direction.Similar work using multi-modal (but not dynamic) logic is one of Fari~nas del Cerro and Herzig[28]. They use modalities of the form ASSUME[p] where p is a literal (propositional formula or itsnegation). This modality performs a transition to a world which is the same as the current one,except that the literal p is true in the new world. However their approach is too simplistic|onlyliteral assertions/deletions are allowed, and the database is assumed complete, so that assuming:p amounts to deleting p|and their logic collapses to conventional propositional calculus. (Thiswork may also be considered under Section 3 on database updates.)Warren [72] and Manchanda [58, 57] in his thesis develop a theory of database updates in pureProlog, based on modal logic and the two operators assume and forget, which are similar toassert and retract, but have a clear logical semantics. The language Object-Prolog [24] devel-oped in Hungary also features fully-backtrackable assert/retract. ObjVProlog of Malenfant,Lapalme and Vaucher [56] uses a similar approach.Uustalu [71] proposes a two-dimensional modal logic which models uniformly two phenomena:overriding inheritance along the object hierarchy dimension and state change along the time di-mension. Objects inherit the non-overridden part of their behavior from their ancestors in theinheritance hierarchy, much in the same way as they inherit the non-changed parts of their statefrom the previous instant in time.A major problem with utilising Dynamic Logic for mutable object state is that it is designed toreason about programs and changes, not to actually execute them, or serve as the basis of an Object-Oriented Logic Programming system. In DL, programs and logical formul� are two disparate typesof entities, whereas in Logic Programming programs are formul�, with computation equated toproof search. Also, in Object-Oriented Programming, queries (methods to return some information)and transactions (methods to perform some changes) can be freely mixed in methods which bothreturn information and have side e�ects. So it is not by chance that the attempts to use DL forOOLP has come from the formal speci�cation community and not from the logic programmingcommunity. Also, there are quite a few LP systems implementing modal logic [27, 29], and theyare more theorem provers than programming systems.5 Perpetual Objects: Exploiting the Dynamics of ProofsAs was mentioned in the introductory section, the notion of truth in classical logic is global andstatic. However there is a dynamic component in a LP or automated proof system: the proofprocess itself. A proof develops over time, and its (conceptually parallel) branching subproofs arespatially separated. Therefore, it is possible to represent objects as perpetually reappearing (byrecursively calling themselves) predicates, bearing the object state in their argument terms.8

There is a whole family of OOLP languages based on concurrent versions of Prolog and thefore-mentioned paradigm. Concurrency (at least coroutine-based pseudo-concurrency) is needed inorder to capture the simultaneous development of a number of objects. (But see Section 6 for twoapproaches achieving the same e�ect which do not rely on concurrency.) JosSome early ideas areproposed in Kahn's Intermission [44], Hewitt and Agha's Actors also inuenced this approach.The seminal paper is by Shapiro and Takeuchi [69] and later languages areMandala [30], Vulcan[47, 45, 48], Polka [20, 21], A0UM [77, 78]. The base language of the Fifth Generation ComputerSystems project ESP [14, 15, 40] can also be counted here. A good introduction to these ideas is[46].The mechanics of modeling OO notions in this paradigm is as follows [69]:1. Objects are represented by perpetual predicates (proof processes). In order to persist betweenmessage sends, the object has to explicitly reinstate itself by making a recursive call.2. Object state is represented by the arguments of the object predicate. State change is achievedby substituting in the recursive call values di�ering from the input parameters of the messagesend.3. One of the arguments of the predicate is a message stream to the object, represented as alazy list (one whose tail can be undetermined). After handling a message, the object passesthe rest of the stream to itself:object (State, [mesg | StreamRest]) :-change (State, NewState), object (NewState, StreamRest).4. The object process is activated when a message is received (the head of the stream is bound),and after handling the message the process is suspended. Technically this means that therecursive call is not pursued immediately, but is postponed until (the head of) StreamRestgets determined; and also that no backtracking information is stored for this call (that is, tailrecursion elimination is being done). In committed-choice languages the clause body is beingsplit into a guard and body proper: Head :- Guard | Body, and after the guard is satis�ed,execution commits to this clause by forgetting all other choice points (| is called the commitoperator). So our earlier example becomesobject (State, [mesg1(Param) | StreamRest) :-this_is_the_correct_method1 (mesg, Param) |change1 (State, NewState), object (NewState, StreamRest).object (State, [mesg2(Param) | StreamRest) :-this_is_the_correct_method2 (mesg, Param) |change2 (State, NewState), object (NewState, StreamRest).5. If an object cannot handle a message, it delegates it to its superobject (an acquaintance heldin one of the predicate parameters), similar to the Actors paradigm and Self class-lessprototype objects.6. A message is responded to either by sending a dedicated message in the opposite direction orby binding a place-holder \result" variable built-in the message term. This way the sender9

does not have to wait until the message is responded to, but can continue execution until theresult is needed, at which point it will be suspended if the result is not bound yet.A problem with this approach is that the semantics of Concurrent Prolog and othercommitted-choice languages is very di�erent from the semantics of Prolog (some authors evengo as far as to call Concurrent Prolog an \impure dialect" of Prolog). The (potential) non-determinism of Prolog's Selection Rule (which clause to try next in order to achieve the currentgoal) is a kind of \don't know" non-determinism and does not a�ect the declarative semantics ofthe program because backtracking tries all applicable clauses in turn (unless cut is used). Howeverin committed-choice languages after a guard is satis�ed the execution commits to the correspondingclause and the execution of all other clauses is abandoned. Therefore it is an essential fact thatthe guards are tested before the body of the clause is executed, and so the commutativity of logicalconjunction is not respected. Furthermore, the programmer should ensure that it does not matterwhich of the eligible clauses will be committed to (\don't care" non-determinism).The fore-mentioned problem, although making programming in Concurrent Prolog a lessdeclarative e�ort than one would like it to be, has a bright side: it makes the programming ofreactive systems (as described in Section 1) possible, because the search tree is pruned early andnot all possible answers to the stimulus are computed, but only the ones relevant to the currentstate (of course, this can be achieved in conventional Prolog, but it will involve extensive use ofcut).Another problem is that all the arguments of the predicate (attributes of the object) are to bepassed to the reinstating recursive call, even if only a small part of them are changed (similarlyto the frame problem in AI). It is possible to overcome this by packaging all attributes in anAbstract Data Type entity which is only capable of performing elementary attribute updates, butthis introduces another level of indirection and thus, ine�ciency.Another problem is that this approach does not model very well the structurisation (static)aspects of OOP. In order to achieve incremental (default) programming (specifying only the methodswhich specialize an object from its corresponding superobject), the programmer has to maintainin the subobject a pointer to its superobject and call the superobject explicitly. It would be fairto say that this approach achieves delegation only, but not inheritance. Therefore, plainly applied,this approach is rather low-level. Some higher-level languages (e.g. Vulcan and A0UM) areimplemented as preprocessors which translate them to an underlying concurrent LP language, oras specialized interpreters, which perform delegation automatically. But even if these languages aremore convenient, they are somewhat ine�cient compared to convenient OOP languages like C++or Smalltalk, because the representation of an object is not a record formed by appending thespecializing attributes of the object to the record of the superobject, but rather a chain of partialrecords connected by delegation links. So in order to use an inherited attribute, a method in theobject has to ask its superobject explicitly. Also, since a self pointer pointing to the object is notpassed automatically upon delegation, polymorphism is problematical. Namely, if the superobjectneeds to call a polymorphic method in the object, an explicit passing of self is to be arranged bythe programmer. This also creates a proliferation of processes corresponding to partial objects andcomplicates the message patterns between them.Another problem is that the is-a and part-of hierarchies are mixed-up: both require that theobject holds pointers to its parts/superobjects and both rely on explicit delegation. This has bothbad methodological implications and causes ine�ciency. In Smalltalk the parts of an object arerepresented by pointers in its record (unless they are atomic non-object entities, like numbers), but10

in C++ one has the option to either have pointers to the subparts, or package the part objectsthemselves in the record.This approach models relatively well the short-term aspects of state, but is not that good atmodeling long-term aspects. For example, it is not quite clear how to integrate it with an Object-Oriented Database, short of using completely disparate object representations in the short-termand long-term memories.The inconvenience that the programmer should write explicit code in order to conform to theobject-oriented style has a reverse side: it is possible (and even not very hard) to program veryexible and varied patterns of communication and delegation, which would be hard if a commit-ment is made to speci�c patterns in the language itself. For example an object may have a numberof message streams (ports) and not only one; one-to-many broadcasting is easy and many-to-onecommunication is possible by introducing special stream-merging components or a generalizationof streams called channels. The reader will see a similar phenomenon|ine�ciency and/or incon-venience, but on the other side great exibility|in other approaches as well (Section 6).Notwithstanding its de�ciencies, this approach is an easy-to-implement integration of completelyseparate ideas which are �tted very well together.6 Logical Objects and Linear Objects: Multiple HeadsIt turns out that the salient feature exploited by the perpetual objects approach (covered in theprevious section) is not concurrency itself, but the ability to pursue more than one goal simulta-neously, thus modeling the simultaneous development of more than one object. Concurrency (orcoroutine-based pseudo-concurrency) is only a means to this end; there are other ways to achieveit. One of them is to extend Prolog by allowing many heads in a clause and/or disjunctive goals.In order to avoid the combinatorial explosion of the search space, restrictions should be imposedon the way these additional heads are pursued.This section describes two proposals which, although stemming from di�erent grounds andhaving di�erent formal justi�cations, nevertheless end up in a quite similar form.Logical Objects was proposed by Conery [18, 17, 19] in 1987. It introduces a new kind ofliterals|object literals|whose arguments carry the object state (similarly to Section 5). Howeverthe thread of control is not programmed as a message stream held by the object, but more in thespirit of conventional Prolog using \normal" literals (Conery calls them procedure literals). If thecurrent goal contains an object literal, it is not pursued independently, but is \consumed" only inconjunction with other procedure literals. (An exception to this rule is that when the goal consistsof object literal(s) only, they are executed by themselves, which corresponds to some \�nalizing"actions with the object(s): destroying them or checking their integrity.)A program clause is allowed to have in its head, in addition to one procedure literal, zero ormore (but usually 0 or 1) object literals. Since the head is deemed a conjunction of literals, theseare not really clauses anymore (which are disjunctions of literals). However this does not changethe inference method drastically (it is very similar to normal binary resolution), because an objectliteral is only pursued together with a procedure literal. Thus the proof that some object exists isconstructed in parallel with the proof that it has certain properties.In order for a clause to �re, all its heads are to be matched in the set of goals, then these goalsare consumed and the clause is executed. 11

object(ID,State), mesg :-change(State,NewState), object(ID,NewState).(contrast this with the example in Section 5). The merit of this approach is that is does notdepend on a Concurrent Prolog implementation: the language Hoops described in [19] isnormal backtracking Prolog. Object state in the Concurrent Prolog approach is held in asuspended (waiting for a message) process, while in this approach the object literals in the goalare suspended (\pushed back" in the set of goals) until a suitable procedure literal is available.Therefore suspending here is performed globally, in only one place.If there are no object literals in the head of a clause, but there is some in the body, a newobject is created. Deletion of objects is modeled by having an object literal in the head, but noobject literal in the body. Object literals usually bear an OID used to distinguish among separateinstances of the same class. If there are two object literals with the same ID in the head and in thebody, this corresponds to state change.new_stack(ID) :- generate_id(ID), stack(ID,[]). % creationpush(ID,X), stack(ID,S) :- stack(ID,[X|S]). % updatepop(ID,X), stack(ID,[X|S]) :- stack(ID,S). % updatetop(ID,X), stack(ID,[X|S]) :- stack(ID,[X|S]). % pure querydelete(ID), stack(ID,_). % destructionConery does not develop any inheritance mechanisms in his original proposal, he only observesthat \The Logical Objects approach does not hinder the implementation of inheritance". Alater implementation in Andorra at SICS [16] proves him right. (Andorra is a concurrent LPlanguage, but it does not use commitment: a choice point is delayed until su�cient information tomake the choice is available.) If the object A inherits from the object B, then A consists of twoobject literals with the same ID, one for the base object B and one for the additional attributes ofA. An example adapted from [16] follows: assume that we have an account object and we extendit to a tax_account object which also knows about tax deductions and accumulates the currentdeductions D.(1) new_tax_account(ID) :- new_account(ID), tax_account(ID,0).(2) tax_account(ID,D), spend(ID,X) :-(3) spend(ID,X),(4) deduction(X,D1), tax_account(ID,D+D1).What appears to be a misplaced recursive call in (3) is in fact a call to the overridden method in thesuperclass. The following mechanism accomplishes this: when the head of the clause (2) is matchedin the set of goals, the literal tax_account(ID,D) is consumed. Therefore the predicate call (3)cannot match again the same clause (2), because no corresponding object literal is present. Thiscalls the supermethod and upon return from it, the needed additional computation is performedand the tax_account is re-established. However this technique is order- and implementation-dependent, because the application of a clause should be non-atomic. Furthermore, Conery andHaridi does not explain how is the more speci�c method chosen for execution in the �rst place, ifthe literal account needed for the execution of the more general (super-) method has also beenpresent. This inheritance mechanism (as well as this problem) is very similar to the one used inLinear Objects (see below), which has been developed earlier.12

There is an e�ciency problem with this approach: the concept of message sending in LogicalObjects is quite far from message passing in traditional object-oriented languages. A sender doesnot really send the message to the receiver, it rather includes receiver's ID in it and then \posts"the message to a global blackboard-like structure (the set of goals), from where the receiver picksit using pattern matching. Conery and Haridi in [16] mention \Pattern Matched Object Selection"(PMOS) and argue that it simpli�es programming (compared to the Concurrent Prolog ap-proach), because no explicit communication patterns are to be established, no streams are to beconnected etc. Although this observation is true, PMOS has bad inuence on e�ciency, because ageneral pattern matcher (e.g. of the kind of RETE) is to be employed. Object IDs in Logical Ob-jects are not machine-oriented e�ective address-like entities (currently they are simply integers),and they cannot be: during the processing of every message the object is consumed and then re-created again, and it would be impossible to notify all objects who reference it about this \changeof address". Smalltalk has a similar problem (objects may be moved during garbage collection),which is solved using two redirection levels. However even if this is applied here, the problem withthe distribution of the object over a number of partial records (corresponding to incrementallyextending the object during its specialization) remains. The unstructured blackboard-like globalobject space reappears in Maude (see Section 8), and the fragmented object records and the lackof \real" OIDs is even worse in Linear Objects (see below).Linear Objects of Andreoli and Pareschi [8, 6, 7] goes one step further than Logical Ob-jects: not only is an object separated from its message stream, but the object literal itself is splitinto small pieces each bearing only one attribute or a few related attributes.Note: the Linear Objects system, which is based on Linear Logic, probably belongs toSection 7, but I wanted to emphasize its similarity to Logical Objects. In any case, it cannotbe fully understood without reading the section on Linear Logic. More papers are available astechnical reports from the European Computer industry Research Center (ECRC) in Germany.This �ner granularity allows methods to specify and carry-over only the \essential" attributesof the object: the ones which are either changed by the method or are inputs to the method. Italso allows the system to \infer" is-a relations automatically: an object A is-a B i� the multisetof attributes of A is a superset of those of B. This justi�es Andreoli and Pareschi in saying thatLinear Objects have \built-in inheritance". For example all the methods for point below (e.g.clause (5)) also apply to a subclass \colored point". In the methods of the specialized class (e.g.(6)), one does not have to mention and carry-over attributes from the base class (e.g. x(X) andy(Y)), unless they are really needed.(5) point @ x(X) @ y(Y) @ move(X1,Y1) <- point @ x(X1) @ y(Y1).(6) point @ color(C) @ set_color(C1) <- point @ color(C1).The new connective @ in the clauses above is the multiplicative disjunction of Linear Logic (seeSection 7). It is used as the \glue" which ties the part of an object together. The other connective(which is allowed in clause bodies, but not in clause heads) is &: additive conjunction. It aggregatesobjects and messages into larger entities called contexts , and at the same time separates objectsfrom one another and does not allow parts of di�erent objects to mix together (@ binds strongerthan &). The connective <- which divides the head of a clause (method) from its body is linearimplication.Similarly to a probelm in Conery's proposal, it is not clear how exactly the most speci�c method13

(overriding a method in a superclass) is chosen for execution. There is one more kind of implication:<= (linear implication combined with the modality of course) which speci�es that the method isapplicable only if the literals in the goal exactly match the literals in the clause head (and are notsimply a superset), but Andreoli and Pareschi do not use it for this purpose.Linear Objects are well suited for concurrent programming, because additive disjunctionintroduces a kind of OR-parallelism, dual to the usual AND-parallelism of goals in a clause. Andreoliand Pareschi compare these to the internal distribution of tasks in an organization and the externalco-operation among organizations. (In fact Linear Objects uses message streams , but this wasof no importance for the examples (5) and (6)).The problem of Logical Objects that an object-message pair is to be pattern-matched to itscorresponding method reappears here, but it is even worse, because the granularity is �ner. This�ner granularity enables great exibility, but one has to pay for it. Andreoli and Pareschi haveused partial evaluation techniques to diminish this problem; probably the experience gained fromthe Self language will be useful here.An \intuitive" criticism of Linear Objects is that such \�nely crushed" objects do not seemvery well encapsulated, their only \capsule" is the surrounding pair of & connectives. This leadsto bad consequences, e.g. all the attributes of an object have to be mentioned for a destruction ora copy operation, thus every object should have its own such operation. In a conventional OOPlanguage the compiler takes care of this. Also, a method in Linear Objects does not belong toa distinguished class explicitly by the program; its owner is only determined at runtime by the setof object literals which the method lists in its head.In a summary, Logical Objects and Linear Objects are re�nements of the objects-as-processes approach (Section 5) overcoming many of its de�ciencies, mainly in the structurisationand inheritance aspects. However deduction in them heavily uses pattern matching of object-message pairs to methods, which may be a source of ine�ciency. Also, \real" object identi�ersare impossible in these approaches. Linear Objects are �rmly founded in Linear Logic and thushave a sound and well-understood semantics.7 Linear Logic: Resources Rather Than Truth ValuesLinear Logic has been proposed by Jean-Yves Girard in 1987 [32] and since then has received theattention of many computer scientists (see e.g. [3] for some developments and [4] for a survey).The reason for this is that unlike classical logic, Linear Logic regards propositions as resourceswhich are consumed and produced during the inference process, and not as universally valid (oruniversally false) assertions. This is why Linear Logic is called \resource-aware" and why it isuseful in many areas of computer science which deal with resources. Classical logic treats the proofprocess only as a device to achieve some conclusions, whereas in Linear Logic the proof processis a \�rst class citizen" and is no less important then the conclusions themselves. This is why itis useful to describe and program (concurrent) processes . (Of course, classical logic has rich andsubstantial proof theory, but it is outside the logic.)There are many ways to explain why Linear Logic, but one of the most natural ways is to lookat it as restrictions on the allowed proofs in order to make them more constructive [5]. A proofin classical logic contains many redundancies which increase the space of proofs a lot and makesearching for proofs hard. These include various non-essential choices (permutations of parts of the14

proof) and, worse of all, dead-ends|subproofs of propositions which are then simply thrown away.Linear Logic gets rid of these using two approaches:� Every proposition should be used once and exactly once during the proof (resource-awareness).The sequents of Linear Logic are not sets of formul�, but multisets. Linear Logic does nothave the usual \structural" rules of classical logic:[Weakening] � ` ��;� ` � [Contraction] �;�;� ` ��;� ` �which allow one to reuse or throw away formul�(� and � denote multisets of formul�, � and	 denote individual formul�). (But a formula may be preceded by the modal exponentialoperator \of course" ! or its dual \why not" ?, in which case it can be used any number oftimes.)� Linear Logic uses special syntactic devices in order to explicate the intended proof of a formula.In other words, the syntax guides the proof [5, p.27 �].The idea of syntax-directed proof search leads to splitting conjunction and disjunction into twoforms, additive and multiplicative: additive multiplicativeconjunction &
disjunction � @, }These new connectives are not idempotent (e.g. �&� 6� �), unlike the classical connectives(e.g. � ^ � � �), so a formula cannot be duplicated or disposed of arbitrarily. This makes itpossible to di�erentiate between two intended uses of the connectives which are mixed in classicalinference rule systems. Each of the linear connectives have one corresponding inference rule, forconjunctions: [&] ` �;� ` �;	` �;�&	 [
] ` �;� ` �;	` �;�;�
	(both of these rules would be allowed for ^ in classic logic). Analogously for disjunctions:[�] ` �;�` �;�� 	 [@] ` �;�;	` �;�@	Linear Logic is complicated compared to classical logic. Not only it has more connectives, butthey are also non-functional, which means that truth tables cannot be used. For example the linearnegation �? of a propositional letter � is not reducible to �, in a sense it is independent of it. Fullpropositional linear logic is undecidable (classical propositional calculus is decidable; it is a specialcase of propositional linear calculus with every formula preceded by !). The complexity results forfragments of Linear Logic are also not very encouraging; for example the multiplicative fragment
;@ which corresponds to Horn clause programming, is np-complete [49, 50].During goal-directed proof search inference rules are used backwards (the conclusion is givenand we are searching for the premises). The speci�c proof-theoretic properties of Linear Logicjustify that one can apply initially only the four pure logic rules listed above until the goal is split15

to atoms, and use the logic program only afterwards. This simpli�es greatly the proof constructionprocess.Andreoli and Pareschi use in Linear Objects the connectives @ and & and employ the speci�cproperty of inference rule [&] that the \context" � is duplicated in the two premises for \objectcloning".Linear Logic has been applied in various areas of computing science, from encoding Petri Nets inlogic to optimizing functional languages by controlling interference between expressions. There is arelatively small but growing number of attempts to use it for logic programming: [5, 35, 37, 65, 70].I believe that it can be used more \locally" to deal with mutable object state, not in the particularstyle of Linear Objects, in order to avoid the global blackboard space, to avoid splitting objectsinto such small pieces, and to achieve an OOLP language more faithful to traditional OOP.8 Rewriting Logic: Free Object ReductionsIn 1990 Jos�e Meseguer proposed a logical theory of concurrent objects [60, 61] based on his ear-lier joint work with Joseph Goguen on Abstract Data Types and the OBJ family of equationallanguages. He de�nes Rewriting Logic and a language for declarative concurrent object-orientedprogramming called Maude. Later [62, 63] he develops a theory of general logics based on Cate-gory Theory in order to formalize the notion of a Logic Programming Language and a methodologyof integration of such languages by mapping them to a richer logic which encompasses them all.(Meseguer calls \Logic Programming Language" any declarative in nature programming languageand what traditionally is called LP he names \Relational Programming".) He proposes RewritingLogic as such an encompassing logic and using it integrates rigorously the functional, relationaland object-oriented paradigms. In this work he extends Maude to a language called MaudeLogwhich includes Horn clause programming. Some aspects of the paper [63] are rather technical, butoverall it is very clear and enlightening.Meseguer argues that declarativeness is only one of the advantages of LP, and another no lessimportant is its suitability for concurrent programming : logical axioms bear no inherent orderor sequence, so their application can be performed in parallel. However Horn logic (and moregenerally classical logic) are not suited well for dynamic computations, because they are basedon a Platonic, static notion of truth and they deal with static objects: functions, relations, etc.This makes traditional LP languages awkward for concurrent programming and even for sequentialobject-oriented (state-oriented) programming and therefore unsuitable for large programming tasks.Rewriting Logic is very similar to (order-sorted) equational logic, but in addition to equationsone can specify rewriting rules , which di�er from equations in that they work only in one direction(the corresponding relation is transitive but not symmetric). An example is(1) eq d = q+q+q+q .(2) rl d => q q q q .Here d stands for \a dollar", q stands for \a quarter", the equation (1) speci�es that a dollar equalsfour quarters, and the rewrite rule (2) may specify the behavior of a change machine which canbreak a dollar into four quarters, but not the other way around. Lets add the appropriate declara-tions in order-sorted logic (assuming that the sort Nat is imported from some library module):(3) sorts Cents Purse . 16

(4) subsort Cents < Nat .(5) subsort Cents < Purse .(6) ops d q : -> Cents .(7) op _+_ : Cents Cents -> Cents[assoc comm id: 0].(8) op __ : Purse Purse -> Purse[assoc comm id: null].Here (3) declares the sorts Cents for an amount of money and Purse for a set of coins, (4) declaresthat Cents is a subsort (specialization) of Nat, similarly (5) says that a single coin makes a purse.Line (6) declares d and q as constants of sort Cents (zeroary functions returning Cents). Line (7)declares the operation Plus which adds two amounts of Cents and is associative (this justi�es theabsence of parentheses in (1)), commutative and with 0 as its identity element. The two underlines_ around the + declare it as a binary in�x operation. Line (8) declares an empty-syntax operation(there is nothing between the two _) which again is associative, commutative and with identityelement null (null is what stays between the d's on the right-hand side of (2): just nothing).The operation in (8) is simply multiset union (denoted by juxtaposition of elements) which takestwo Purses and combines them into a bigger Purse. Now it becomes clear that the sort Pursedenotes a multiset (bag; that is, duplicates are allowed) and not just a plain set, because the unionoperation is not idempotent.Note: Semantically the two operations (7) and (8) are rather di�erent: the former takes twoelements and forms their sum, while the latter keeps the two elements distinct and only puts theminto an aggregate. We may de�ne a function which sums all the coins of a purse:(9) op amount : Purse -> Cents .(10) vars P1 P2 : Purse .(11) eq amount(null) = 0 .(12) eq amount(P1 P2) = amount(P1) + amount(P2) .but once two amounts of Cents are summed, it is impossible to recover the coin distribution of theresult.In Maude an object is represented as a termhO : C j a1 : v1; : : : ; an : vniwhere O is the object identi�er, a term of sort OID; C is the object class; a1; : : : ; an are the objectattributes and v1; : : : ; vn are their values (the object state). Messages are represented similarly asterms bearing the identity of the receiver and other relevant information. These message parametersare \injected" in the message term by corresponding message constructor functions, e.g.:(13) msgs credit debit : OID Nat -> Message .(14) msg transfer_from_to_ : Nat OID OID -> Message .Line (13) gets a receiver's OID and an amount and constructs a Message for the correspondingoperation. Line (14) declares a ternary mix-�x operation which constructs a message to transfer aNat amount of money from one account to another. For type-checking purposes it probably wouldbe better to declare the object parameters of these functions not simply as OID, but as speci�c17

object classes, e.g. Account.OID. There is no problem to have separate OID types for every classand a preprocessor which does this automatically has been implemented for Maude.The technical device of an Associative Commutative operation with Identity (ACI-operation)is used in Rewriting Logic to represent collections of distributed objects and the messages ow-ing between them. The ACI operation binds these entities into an object space (con�guration ofdistributed objects):(15) subsorts Object Message < Configuration .(16) op __ : Configuration Configuration -> Configuration[assoc comm id: null] .When an object needs to communicate with another object, it simply posts a message to this globalspace. Then this message interacts with the receiver as governed by the appropriated rewrite rules:the left part of a rule is matched against the message and (part of) the state variables of the receiverand then the message is (usually) consumed (rewritten to null) and the receiver's state changed.Also, another message can be generated during this process and sent to some other object.Unlike e.g. Smalltalk, where a method always belongs to a particular class and every messageshould have a designated receiver (so 2 + 3 is interpreted as the message +3 sent to the object 2,which is rather unnatural), in Maude this need not be so. The message transfer_from_to_ hastwo receivers in the sense that the corresponding method (rewrite rule) should be able to locateboth objects (19) and (20):(17) rl(18) transfer A from X to Y(19) < X : Account | bal: XB >(20) < Y : Account | bal: YB >(21) =>(22) < X : Account | bal: XB-A >(23) < Y : Account | bal: YB+A >(24) if XB >= A .(of course, this can be written more compactly). This rule says \If the entities (18), (19) and(20) are simultaneously present, they can be rewritten to (22) and (23), provided (24) holds"(so we have Conditional Rewriting Logic here). Please note that (18) is not a \method name", itis an entity which should be present in the Configuration for this rewrite rule to �re, just like thetwo receiver objects (19) and (20).Formally the di�erence between equations and rewrite rules is not that big: the former workin both directions (symmetric), whereas the latter work in only one direction. Actually in theoperational sense they are almost the same, because one usually uses equations unidirectionally:to rewrite function calls with the corresponding function de�nitions in order to obtain a particularcanonic form. However the underlying logical semantics are rather di�erent, the unidirectionalnature of rewriting rules corresponding to the unidirectional ow of time in an evolving distributedsystem.Adding relational programming (going from Maude to MaudeLog) is not hard: it is wellknown that Prolog goal-directed deduction can be thought of as rewriting the current set ofgoals using the program clauses as rewriting rules until the empty goal is reached. Logic variablescan be modelled by allowing variables in the rewriting rules, and non-determinism (with which18

Prolog deals by backtracking) is accounted for by the non-deterministic nature of rewrite (theremay be many rules which match the current con�guration). (A similar in spirit work by Debart [23]demonstrates clearly the power of equational rewriting techniques by implementing multi-modallogic programming through a translation of modal formul� to many-sorted equational formul�.)For example the Prolog programgrandparent(X,Z) :- parent(X,Y), parent(Y,Z).parent(peter,paul).parent(mary,paul).is translated to the Maude modulemod FAMILY isextending PROLOG .sort People .ops peter paul mary : -> People .ops parent grandparent : People People -> Bool .vars X Y Z : People .rl parent(X,Y), parent(Y,Z) => grandparent(X,Z).rl true => parent(peter,paul) .rl true => parent(mary,paul) .endmThe module PROLOG imported by FAMILY de�nes the sort Bool and the ACI operation _,_ :Bool Bool -> Bool (conjunction) with identity true. Then we may ask the system whether it canperform the rewrite true => grandparent(X,paul).This theory seems rigorous, general and elegant; many of the di�cult problems of multiparadigmprogramming (including the problem of mutable state) simply do not appear in it. The maincriticism to it is that its e�cient implementation does not seem easy. For one thing, rewritingshould be done modulo the ACI rules. Formally speaking, this means that we will have to rewritenot simply terms, but equivalence classes of terms under the ACI relation. Informally this meansthat a powerful enough matching algorithm should be used so that it can e�ciently try all possiblepermutations of the entities in the con�guration (e.g. the three entities (18), (19) and (20) aboveshould be thought of as unordered). For some recent work on AC- and ACI-rewriting see [36, 55, 67].Another problem is that a rewriting rule should mention and carry to the other side all of thestate of an object, even the attributes which do not a�ect and are not a�ected by the rule (in (17)we have assumed that the only attribute of Account is bal). This can be avoided using partialmatching (with placeholder don't-care variables) inside the structure of the object, e.g.(25) rl transfer A from X to Y < X : Account | bal: XB, RestX >(26) < Y : Account | bal: YB, RestY >(27) => < X : Account | bal: XB-A, RestX >(28) < Y : Account | bal: YB+A, RestY > if XB >= A .(Here the operation , inside the object structure should also be ACI. Of course, the addition ofdon't-cares better be done automatically.) However, this makes the job of the pattern matcher everharder. There was a similar problem in Logical Objects (Section 6).19

Although each individual object is well-structured, the con�guration of objects is very muchlike a blackboard (the same like in Logical Objects) and is to be accessed globally by someinterpreter which detects ready-to-interact object-message pairs. The natural way to avoid thishuge global space is to allow objects to have subobjects as components (aggregation), which is notprovided for in Maude.In conclusion, Rewriting Logic is a marvelous device which integrates in a very simple andnatural manner paradigms which were traditionally hard to reconcile: functional, object-oriented,relational and concurrent programming. It \only" remains to implement it e�ciently.9 ConclusionsOf the huge variety of di�erent proposals to accommodate state change in Logic Programming, acouple of approaches stand out as most promising (of course, this selection is highly subjective):� Traditional but revitalized approaches, as evidenced by Transaction Logic (Section 3). Herethe important point is a shift of the emphasis from the controversial non-monotonic issuesof elementary updates to the compositional properties of transactions built up from suchupdates and the possibility to really program such transactions.� Approaches based on Linear Logic (Section 7), whose resource-awareness makes it suitablefor reasoning about concurrency and locality, and whose constructive in nature proof searchmakes it suitable for logic programming. I believe that, despite Andreoli and Pareschi'snumerous (and excellent!) works, Linear Logic has not been utilized in full in this area yet.� Ways to implement Rewriting Logic (Section 8) e�ciently, which would make the three majorprogramming paradigms available in a well-integrated framework and would expose unex-pected synergism between them.In any case, it should be concluded that despite numerous e�orts, no generally accepted solutionto this problem exists yet and there is a large area for research.References[1] S. Abiteboul. Updates: A new frontier. In Second Intl. Conf. on Database Theory, pages 1{18,1988.[2] S. Abiteboul and V. Vianu. Procedural and declarative database update languages. In Prin-ciples of Database Systems (PODS'88), pages 240{250. ACM SIGACT-SIGMOD-SIGART,1988.[3] S. Abramsky. Computational interpretations of linear logic. Theoretical Comput. Sci., 111:3{57, 1993. Earlier version appeared as Imperial College Technical Report DOC 90/20, Oct. 1990.[4] V. Alexiev. Applications of linear logic to computation: An overview. Technical ReportTR93{18, University of Alberta, Dec. 1993. Submitted to Bulletin of the IGPL.20

[5] J.-M. Andreoli and R. Pareschi. Logic programming with sequent systems: A linear logicapproach. In P. Schroeder-Heister, editor, Intl. Workshop on Extensions of Logic Programming,number 475 in LNAI, pages 1{30, T�ubingen, Germany, 1989.[6] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance.In D. Warren and P. Szeredi, editors, Intl. Conf. on Logic Programming (ICLP'90), pages495{510, Jerusalem, Israel, June 1990. MIT Press.[7] J.-M. Andreoli and R. Pareschi. LO and behold! Concurrent Structured Processes. In ECOOP-OOPSLA'90, Ottawa, Ontario, 1990. (SIGPLAN Notices, 25(10):44{56, Oct. 1990).[8] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance.New Generation Computing, 9(3-4):445{473, 1991.[9] F. Banchilon. A logic programming/object-oriented cocktail. SIGMOD Record, 15(3):11{21,Sept. 1986.[10] A. Bonner and M. Kifer. Transaction logic programming (or, a logic of procedural anddeclarative knowledge). In Intl. Conf. on Logic Programming (ICLP'93), pages 257{279, Budapest, Hungary, 1993. The full papewr is available as University of TorontoTechnical Report CSRI-270, April 1992 (revised 21 May 1993) from csri.toronto.edu:csri-technical-reports/270/report.ps.[11] A. Bonner and M. Kifer. A general logic of state change. Technical report, Computer SystemsResearch Institute, University of Toronto, 1994. In preparation.[12] A. Burandt. Equivalence of Denotational Semantics and Conditions of Standard Models in theDynamic Logic. Diploma thesis, University of Karlsruhe, 1991.[13] W. Chen. Declarative speci�cation and evaluation of database updates. In C. Delobel, M. Kifer,and Y. Masunaga, editors, Deductive and Object-Oriented Databases (DOOD'91), number 566in LNCS, pages 147{166, Munich, Germany, Dec. 1991.[14] T. Chikayama. ESP{Extended Self-contained Prolog{as a preliminary kernel language ofFifth Generation computers. New Generation Computing, 1:11{24, 1983.[15] T. Chikayama. Unique features of ESP. In International Conference on Fifth GenerationComputer Systems, pages 292{298, Tokyo, Nov. 1984.[16] J. Conery and S. Haridi. Eudorra: and object-oriented Andorra. Position paper on theICLP'91 Workshop on OOLP, June 1991.[17] J. S. Conery. HOOPS: an object-oriented Prolog. Technical report, University of Oregon,1987.[18] J. S. Conery. Object-oriented programming with First-Order Predicate Calculus. TechnicalReport CIS-TR-87-09, University of Oregon, Aug. 1987.[19] J. S. Conery. Logical objects. In R. A. Kowalski and K. A. Bowen, editors, Fifth InternationalConference and Symposium on Logic Programming, pages 420{434, 1988.21

[20] A. Davison. Polka: a Parlog object-oriented language. Technical report, DOC, ImperialCollege, London, 1988.[21] A. Davison. From Parlog to Polka in two easy steps. In J. Maluszy�nski and M. Wirsing,editors, Third International Symposium on Programming Language Implementation and LogicProgramming, PLILP'91, number 528 in LNCS, pages 171{182. Springer-Verlag, 1991.[22] A. Davison. A survey of logic programming-based object-oriented languages. Technical Report92/3, University of Melbourne, Jan. 1992. Fourth revision; �rst published April 1989.[23] F. Debart, P. Enjalbert, and M. Lescot. Multi-modal logic programming using equational andorder-sorted logic. In H. Kirchner and W. Wechler, editors, Algebraic and Logic Programming(ALP'90), number 463 in LNCS, pages 55{69, Nancy, France, Oct. 1990. Springer-Verlag.[24] A. Doman. Object-Prolog: Dynamic object-oriented representation of knowledge. InT. Henson, editor, SCS Multiconference on Arti�cial Intelligence and Simulation: The Di-versity of Applications, pages 83{88, San Diego, CA, Feb. 1988.[25] R. Fagin, G. Kuper, J. Ullman, and M. Vardi. Updating logical databases. In P. Kanellakis,editor, Advances in Computing Research, volume 3, pages 1{18. Plenum Press, 1986.[26] R. Fagin, J. Ullman, and M. Vardi. On the semantics of updates in databases. In Principlesof Database Systems (PODS'83), pages 352{365, Atlanta, GA, Mar. 1983. ACM SIGACT-SIGMOD-SIGART.[27] L. Fari~nas del Cerro. MoLog: A system that extends Prolog with modal logic. NewGeneration Computing, 4(1):35{50, 1986.[28] L. Fari~nas del Cerro and A. Herzig. An automated modal logic of elementary changes. InP. Smets, E. Mamdani, D. Dubois, and H. Prade, editors, Non-Standard Logics for AutomatedReasoning, pages 63{76. Academic Press, 1988.[29] L. Fari~nas del Cerro and A. Herzig. Deterministic modal logic for automated deduction. InL. Aiello, editor, European Conference on Arti�cial Intelligence (ECAI'90), pages 262{267,Stokholm, Sweden, Aug. 1990.[30] K. Furukawa, A. Takeuchi, S. Kunifuji, H. Yasukawa, M. Ohki, and K. Ueda. Mandala: Alogic based knowledge programming system. In International Conference on Fifth GenerationComputer Systems, Tokyo, Nov. 1984.[31] P.-J. Gailly and J.-L. Binot. The BIM-Probe experiment. Position paper on the ICLP'91Workshop on OOLP, June 1991.[32] J.-Y. Girard. Linear logic. Theoretical Comput. Sci., 50:1{102, 1987.[33] D. Harel. First-Order Dynamic Logic, volume 68 of LNCS. Springer-Verlag, 1979.[34] D. Harel, D. Kozen, and R. Parikh. Process logic: Expressiveness, decidability, completeness.Journal of Computer and System Sciences, 25(2):144{170, Oct. 1982.22

[35] J. Harland and D. Pym. The uniform proof-theoretic foundation of linear logic programming(extended abstract). In V. Saraswat and K. Ueda, editors, Intl. Symposium on Logic Program-ming (SLP'91), pages 304{318, 1991. The full paper is available as University of EdinburghTechnical Report ECS-LFCS-90-124, Nov. 1990.[36] M. Henz. Term rewriting in associative commutative theories with identities. Master's thesis,State University of New York at Stony Brook, Dec. 1991. Available by anonymous FTP fromduck.dfki.uni-sb.de: pub/papers/MT-Henz.ps.Z.[37] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linear logic (extendedabstract). In Logic in Computer Science (LICS'91), pages 32{42, Amsterdam, July 1991. IEEEComputer Society Press. Full paper to appear in Journal of Information and Computation1992, available from ftp.cis.upenn.edu: pub/papers/miller/ic92.dvi.Z.[38] Y. Ishikawa and M. Tokoro. Concurrent object-oriented knowledge representation languageOrient84/K: Its features and implementation. In OOPSLA'86, Portland, OR, Sept. 1986.[39] Y. Ishikawa and M. Tokoro. Orient84/K: A language with multiple paradigms in the ob-ject framework. In Nineteenth Annual Hawaii International Conference on System Sciences,volume II: Software Track, Honolulu, HI, Jan. 1986.[40] R. Iwanaga and O. Nakazawa. Development of the object-oriented logic programming languageCESP. Oki Technical Review, 58(142):39{44, Nov. 1991.[41] R. Jungclaus. Logic-Based Modeling of Dynamic Object Systems. PhD thesis, Technical Uni-versity Braunschweig, Germany, 1993.[42] R. Jungclaus, G. Saake, T. Hartmann, and C. Sernadas. Object-oriented speci�cation of infor-mation systems: The Troll language. Technical Report Informatik-Bericht 91-04, TechnicalUniversity Braunschweig, Germany, 1991.[43] R. Jungclaus, G. Saake, and C. Sernadas. Formal speci�cation of object systems. In S. Abram-sky and T. S. E. Maibaum, editors, International Joint Conference on Theory and Practice ofSoftware Development (TAPSOFT'91), Volume 2: Colloquium on Combining Paradigms forSoftware Development, number 494 in LNCS, pages 60{82, Brighton, UK, Apr. 1991. Springer-Verlag.[44] K. M. Kahn. Intermission|Actors in Prolog. In K. L. Clark and S. A. T�arnlund, editors,Logic Programming, pages 213{228. Academic Press, 1982.[45] K. M. Kahn. Vulcan: Logical concurrent objects. In E. S. Shapiro, editor, ConcurrentProlog: Collected Papers, volume 2, pages 274{303. MIT Press, 1986.[46] K. M. Kahn. Objects{a fresh look. In S. Cook, editor, European Conference on Object-OrientedProgramming (ECOOP'89), pages 207{223, Nothingham, UK, July 1989.[47] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Objects in concurrent logicprogramming languages. In OOPSLA'86, Portland, OR, Sept. 1986.23

[48] K. M. Kahn, E. D. Tribble, M. S. Miller, and D. G. Bobrow. Vulcan: Logical concurrentobjects. In B. Shriver and P. Wegner, editors, Research Directions in Object-Oriented Pro-gramming, pages 75{112, Cambridge, MA, 1987. MIT Press.[49] M. Kanovich. The multiplicative fragment of linear logic is NP-complete. ITLI PrepublicationSeries X-91-13, University of Amsterdam, 1991.[50] M. Kanovich. Horn programming in linear logic is NP-complete. In Logic in Computer Science(LICS'92), pages 200{210, Santa Cruz, CA, June 1992. IEEE Computer Society Press. AlsoUniversity of Amsterdam ITLI Prepublication Series X-91-14.[51] H. Katsuno and A. Mendelzon. On the di�erence between updating a knowledge base andrevising it. In J. Allen, R. Fikes, and E. Sandewall, editors, Knowledge Representation andReasoning (KR'91), pages 387{394, Boston, MA, Apr. 1991.[52] F. Kesim and M. Sergot. On the evolution of objects in a logic programming framework. InICOT, editor, Fifth Generation Computer Systems (FGCS'92), pages 1052{1060, 1992.[53] R. kowalski. Database updates in event calculus. Journal of Logic Programming, 12(1&2):121{146, Jan. 1991.[54] R. Kowalski and M. Sergot. A logic-based calculus of events. New Generation Computing,4:67{95, 1986.[55] D. Lugiez and J. Moysset. Complement problems and tree automata in AC-like theories.In P. Enjalbert, A. Finkel, and K. Wagner, editors, Proceedings STACS 93, volume 665 ofLecture Notes in Computer Science, pages 515{524. Springer Verlag, Feb. 1993. Available byanonymous FTP from duck.dfki.uni-sb.de: pub/ccl/inria-lorraine/stacs93.ps.Z.[56] J. Malenfant, G. Lapalme, and J. Vaucher. Coherent state changes for logic programs. Researchreport LITP 91-01 RXF, �Equipe mixte LITP/RXF, Jan. 1991.[57] S. Manchanda. Declarative expression of deductive database updates. In Principles of DatabaseSystems (PODS'89), pages 93{100. ACM SIGACT-SIGMOD-SIGART, 1989.[58] S. Manchanda and D. Warren. A logic-based language for database updates. In J. Minker,editor, Foundations of Logic Programming and Deductive Databases, Los Altos, CA, 1988.Morgan Kaufmann Publishers.[59] F. G. McCabe. Logic & Objects. International Series in Computer Science. Prentice-Hall, 1992.[60] J. Meseguer. A logical theory of concurrent objects. In ECOOP/OOPSLA'90, Ottawa, Ontario,1990. (SIGPLAN Notices, 25(10):101{115, Oct. 1990).[61] J. Meseguer. Rewriting as a uni�ed model of concurrency. In CONCUR'90: Intl. Conf. onConcurrency Theory, number 458 in LNCS, pages 384{400, Amsterdam, Aug. 1990. AlsoTechnical Report SRI-CSL-90-02, SRI International, Feb. 1990.[62] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical Com-puter Science, 96(1):73{155, 1992. Also Technical Report SRI-CSL-91-05, SRI International,Feb. 1991. 24

[63] J. Meseguer. Multiparadigm logic programming. In Third Intl. Conf. on Algebraic and LogicProgramming, pages 158{200, Volterra, Italy, Sept. 1992.[64] J.-J. C. Meyer and R. J. Wieringa. Actor-oriented system speci�cation with dynamic logic.In S. Abramsky and T. S. E. Maibaum, editors, International Joint Conference on Theoryand Practice of Software Development (TAPSOFT'91), Volume 2: Colloquium on CombiningParadigms for Software Development, number 494 in LNCS, pages 337{357, Brighton, UK,Apr. 1991. Springer-Verlag.[65] G. Mints. Resolution calculus for the �rst order linear logic. Journal of Logic, Language andInformation, (2):59{83, 1993.[66] V. Pratt. Process logic. In Principles of Programming Languages (POPL'79), pages 93{100,Jan. 1979.[67] M. Rusinowitch and L. Vigneron. Automated deduction with associative commutative op-erators. Research Report 1896, Institut National de Recherche en Informatique et Au-tomatique (INRIA), May 1993. Available by anonymous FTP from duck.dfki.uni-sb.de:pub/ccl/inria-lorraine/ AC deduction.ps.Z.[68] D. Sacca, B. Verdonk, and D. Vermeir. Evolution of knowledge bases. In A. Pirotte, C. Delobel,and G. Gottlob, editors, Advances in Database Technology (EDBT'92), number 580 in LNCS,pages 230{244, Vienna, Austria, Mar. 1992. Springer-Verlag.[69] E. Shapiro and A. Takeuchi. Object-oriented programming in Concurrent Prolog. NewGeneration Computing, 1:25{48, 1983.[70] T. Tammet. Proof strategies in linear logic. Technical Report 70, Programming MethodologyGroup, Chalmers University of Technology, University of G�oteborg, 1993. Accepted to Journalof Automated Reasoning. Available from ftp.cs.chalmers.se.[71] T. Uustalu. Combining object-oriented and logic paradigms: A modal logic programmingapproach. In O. L. Madsen, editor, European Conference on Object-Oriented Programming(ECOOP'92), pages 98{113, June 1992.[72] D. Warren. Database updates in pure Prolog. In Fifth Generation Computer Systems, pages244{253. ICOT, 1984.[73] C. Welsch and G. Barth. Reasoning objects with dynamic knowledge bases. In J.P.Martins andE.M.Morgado, editors, Fourth Portuguese Conf. on Arti�cial Intelligence (EPIA'89), pages257{268, Lisbon, Portugal, Sept. 1989.[74] R. J. Wieringa. A formalization of objects using equational dynamic logic. In C. Delobel,M. Kifer, and Y. Masunaga, editors, Second International Congress on Deductive and Object-Oriented Databases (DOOD'91), number 566 in LNCS, pages 431{452,Munich, Germany, Dec.1991. Springer-Verlag.[75] M. Winslett. A model based approach to updating databases with incomplete information.Transactions on Database Systems, 13(2):167{196, 1988.25

[76] M. Winslett. Updating Logical Databases, volume 9 of Cambridge Tracts in Theoretical Com-puter Science. Cambridge Univerity Press, 1990.[77] K. Yoshida and T. Chikayama. A'UM = stream + object + relation. In OOPSLA'89, NewOrleans, LA, 1989. (SIGPLAN Notices, 24(4):55-58, 1989).[78] K. Yoshida and T. Chikayama. A'UM|a stream-based concurrent object language. NewGeneration Computing, 7:127{157, 1990.[79] C. Zaniolo. Object-oriented programming in Prolog. In International Symposium on LogicProgramming, pages 265{270, Atlantic City, Atlanta, Feb. 1984.

26

