
Object�Oriented and Logic�Based

Knowledge Representation

Vladimir Alexiev�

Computing Science Department

University of Alberta

Edmonton� Alberta T�G �H�y

April ����

Abstract

This paper is a survey of a number of languages�systems based on both Object�Oriented
and Logic Programming and designed expressly for Knowledge Representation tasks� My goal
in the paper is to argue that the integration of these two paradigms �particularly the synergism
that emerges from such an integration� forms a stable basis for Knowledge Representation at the
symbolic level� I try to support this claim both by examples from the papers surveyed and by
considerations in a more general context� Some more advanced topics concerning special�purpose
non�classic logics are also discussed�

� Introduction

Since mid�eighties the Object�Oriented �OO� paradigm has established itself as the most e�cient
�up to now� way to cope with the scale and complexity of large applications� KBS were one of
the �rst to employ this paradigm exactly because they are typically large and complex� First
in the Lisp community �LOOPS� Flavors� CLOS� and then in industry �KEE� ART� Nexpert�
Object�� OOP was making its way� An important side bene�t which OOP brings to KBS is that all
components of a KBS	knowledge base� inference engine� user interface etc�	can be implemented
uniformly using OOP�

However� putting aside its software engineering merits� OOP uses the same old imperative mode
of programming which is used in Fortran� Pascal and C� Since it is inadequate for most KR
tasks� other devices such as rule�� constraint� and access�based programming were employed� Again
the Lisp community was the �rst to experiment with these ideas� Fortunately OOP� though it does
not embody or encourage the non�imperative style� does not hamper it either
 OOP seems largely
orthogonal to this aspect� The AI community was familiar with something like OOP �Minsky�s
frames� about a decade before that time� but LOOPS and CLOS were the �rst to use OOP uni�
formly and systematically and to implement such important aspects as inheritance� message passing
and polymorphism�

Another paradigm whose application in AI and KBS always has had numerous proponents
and opponents is Logic Programming �LP�� LP is seen advantageous for KR applications for the
following reasons

�

� LP is declarative
 its user only has to state what is known about the problem domain and
what is the goal� but does not has to state explicitly how to go from the one to the other�

� �Some of� The LP languages possess a clear and well�founded logic semantics which may
have numerous applications ranging from algorithm complexity estimations to metareasoning
about the properties of programs and knowledge bases�

However the opponents of LP state that LP is insu�cient for AI applications because other con�
siderations from cognitive science� psychology� systems science� causal models� elementary physics
etc� etc� are more important� Although possibly true� this statement seems mis�aimed� because
there is nothing in LP to prevent us from taking these considerations into account� It is true that
logic is only a part of our understanding of the world� but nevertheless it is an important part�

A lot of work in the direction of using Prolog for intelligent applications has been done
under the auspices of the Fifth Generation Computer Systems �FGCS� project of Japan� It has
been recognized very early in this project that Prolog itself does not possess the needed software
engineering devices to implement a large�scale KBS� In his paper If Prolog Is The Answer� What
Is The Question�� ���� Daniel Bobrow argues that Prolog is to be coupled with other paradigms
�function�� rule�� access� and object�oriented� in order to be successful� Di�erent paradigms are
good in the representation of di�erent things and One should not be forced �metaphorically� to
pry up nails with a screwdriver�� Of course� one of the most important things when integrating
multiple paradigms is to exploit fully the potential synergism by having a smooth integration of
the paradigms� both in terms of data� execution control and underlying philosophies�

In addition to the work done for reshaping Prolog to �t KR tasks� another important direction
of the FGCS project is towards concurrent execution of Prolog �for example the so�called com�
mitted choice parallelism� of Guarded Horn Clauses�� It turns out that it is very easy to model
objects using concurrently executing Prolog predicates which pass messages �requests to prove a
goal� to each other through potentially unbound and partly�evaluated message queues �this means
that a predicate �or object� or agent� starts ful�lling a request as soon as there is at least one mes�
sage in the queue and does not wait for the queue to become completely known�� After executing
a request� the agent recreates itself by calling itself recursively with the rest of the message queue
as argument� The e�ect of inheritance in OOP can be achieved by the actor passing �delegating��
the requests it cannot handle to one or more of its proxys�� There are numerous languages �both
inside and outside of FGCS� based on this model �spool� Vulcan� scoop� Polka� A�UM�� which
is similar to the Actors model of Carl Hewitt and Gul Agha� However I do not cover this model
in the paper for two reasons

� I believe that before we go into concurrent computations� we need to have a good understand�
ing of the problems in the sequential case� We should not start tackling the problems of how
to parallelize a computation before we have solved its proper problems�

� Although the forementioned is a good model of OOP� it is only a model� which does not
possess the software engineering �size�taming� merits of OOP�

Two of the languages surveyed below are concurrent� but I simply disregard this aspect�

There is another very important non�imperative programming style
 Functional Programming
�and also Equational Programming�� This particular paper talks about Prolog and not about Lisp

�

only because of my personal preferences
 I like Prolog better because I believe that Prolog is
closer to its theoretical roots than Lisp is to ��calculus� Of course� having the possibility to write
equations and use functions is a most welcome convenience and it can be easily implemented e�g�
like in ����� In normal Prolog� one has to write e�g� for the de�nition of the factorial function

fact������

fact�X�Y� �	 X
�� X� is X	�� fact�X��Y��� Y is X�Y��

instead of the much more natural

fact��� � ��

fact�X� � X�fact�X	�� �	 X
��

I would like to state explicitly my opinion that we should not restrict ourselves to Prolog
�notwithstanding that most of the surveyed languages are Prolog�based�� whose �xed backtrack�
ing depth��rst mode of search for solutions is clearly inappropriate for some KB applications and
who uses for data structuring only uninterpreted �syntactic� terms and manipulates them �con�
structs terms and extracts parts of terms� using syntax�based �textual� uni�cation� On one hand�
localization of the operation of Prolog into a single object may diminish the �rst problem� and
allowing arbitrary objects as predicate arguments with uni�cation taking into account the classi�
�cation relations between these objects may solve the second problem� On the other hand� LP is
not only Prolog� and Logic in AI is not only LP �I touch some additional topics in Section ���

There is much more work to be done in developing a formal semantics of the basic notions of
object�oriented computing �mutable state� object identity� inheritance etc�� which would be most
useful both for Deductive Object�Oriented Databases and for Knowledge Bases� of these� muta�
ble state seems most di�cult to express in logic terms� because classic logic does not have the
concept of memory� or state�
 a logical formula always has the same meaning� independent on
the context or time in which we evaluate it �the technical term for this is referential transparency���

The rest of the paper is organized as follows
 in the next section I survey a number of object�
oriented and logic�based languages for KR� comparing and contrasting them� In Section �� I describe
a quite di�erent view on the role of objects in KR due to Ronald Brachman� In Section � I touch
upon some advanced non�classical logics which may very well be applied in KR� The last section
contains a summary of the claims of the paper and a discussion about what else would be useful
to have in a general�purpose KR framework�

� Languages Employing OOP�LP for KR

In this section I brie�y describe a number of languages which use both OOP and LP and are
expressly designed for KR and�or have been successfully used for KR tasks� For each language� I
give a �avor of its syntax and semantics �typically by a small example�� compare it to some of the
other languages and give an account of its uses for KR known to me� My goal in this section is
not that much to delve in the technical details of each language and the di�erences between them
�some of these di�erences are quite subtle�� but to convince the reader that the merger of OOP�LP
gives a viable platform for KR�

�

Most of the material is adapted from the indicated papers� but I also wrote down my consid�
erations and observations �generally all negative opinions about a language are not those of the
authors of the language but are mine��

The reader is supposed to have some familiarity with Prolog and Smalltalk �or some other
OO language�� The languages are presented in chronological order�

��� esp� The Fifth Generation

esp �Extended Self�contained Prolog� ��� �� ��� was not explicitly designed for KR� it is the sys�
tem description language of SIMPOS �Sequential Inferential Machine Programming and Operating
System�� the operating system of the �agship machine of the FGCS project� the PSI �Personal
Sequential Inference�� It is built over the Prolog�like machine language of PSI� KL� �Kernel
Language version �� the current version is KL��� some of the specialized commands and builtin
predicates of KL� were speci�cally designed and tuned up to suit esp� esp is an OO language�
with mutable state� object classes and hierarchical multiple�inheritance structures� It has been
recognized that these features of esp very much simpli�ed and streamlined the implementation of
SIMPOS� and could be very useful for other tasks �mainly those requiring hierarchically represented
knowledge� as well�

esp is translated into KL�� therefore esp is Prolog�based� as opposed to OOP�based� This
means that all the OO notions in esp are to be represented in KL� �which is basically Prolog��
But the converse is also true in some degree� because logic theories �sets of Prolog predicates� are
mapped to objects� a notion which recurs many times in subsequent languages� Another seminal
notion introduced in esp is having the ability to send a query �request to prove a goal� to an object
and the treatment of this as message send� So there are two types of queries �predicate calls� in esp

local�primitive ones� which are executed in the context of the current object �theory� and message
sends �e�g� �open�Door��� directed to a particular receiver �here the variable Door is supposed to
be bound to an object which can handle the message open��

Objects can have �in addition to sets of predicates� slots� or attributes which contain values
changing with time� The eventual state change inside an object in response to a message send is
implemented using some Lisp�like construction and modi�cation primitives present in KL�
 cons�
rplaca� etc� This is not accounted for by the logic semantics of Prolog �the author says Slot
values are constants from the LP point of view��� The author agrees that this does not have a
clear logic semantics �it falls out of pure logic��� but states that since such an ability is immensely
needed in a task like an operating system� they had to make a compromise� Indeed� not only at
that time� but even now� there is no widely accepted logic to model mutable state� So the author
was right to mention We didn�t have time to wait for such an innovation� ��� page �����

esp does implement in full the notions of OOP� It has metaclasses whose logic theories �methods�
are responsible for the creation of new objects� It has multiple inheritance of an accumulating
type�
 the full logic theory of a class consists of the clauses stated explicitly in that class� merged
with all the clauses de�ned in its superclasses� Now this creates some problems because adding
clauses to a class is monotonic �the set of true consequences �provable goals� only increases�� while
for some KR applications non�monotonicity is critical� For example� we may want penguin to be
a subclass of bird and inherit all properties of birds� except that penguins do not �y� This can
be solved easily by an overriding�mode� inheritance �if there is some clause in the subclass for a
certain predicate� its presence disables all the clauses for the same predicate in its superclasses��

�

but the solution adopted in esp relies on the extended cut� predicate available in KL�

class bird has

instance

�fly�Bird��

���

end�

class penguin has nature bird

instance

�fly�Penguin� �	 �� fail�

���

end�

Here the cut ��� predicate commits the execution to the clause for fly found in the penguin class
�which subsequently fails� i�e� returns false� and does not let it try the clause in the class bird� This
deep� �multilevel� cut is also useful for exception handling mechanisms needed in an operating
system�

esp has demon� methods �before� and after� methods�� very similar to the ones described
in Section ��� �or better said� those ones are similar to these here� taking into account the years
of publication�� Another useful facility of esp is a powerful macro language which is written in
Prolog and takes into account the speci�cs of Prolog
 the expansion of a macro de�nition may
need to be distributed before and after the place where it is used �or even in the beginning and
the end of the clause body� and depends on whether it is used in the clause head or body� Using
this macro facility� a convenient function sublanguage has been developed� for example one may
use in�x � in the head of a clause

inc�X�X����

and get the following expansion in the body of the clause

inc�X�Y� �	 add�X���Y��

or use it in the body

���� p�X���� ���

and get the expansion just before the literal

���� add�X���Y�� p�Y�� ���

Concerning the implementation of esp� I believe that a more appropriate approach is to im�
plement LP on top of OOP �or make them equally basic and integrate them�� and not OOP on
top of LP� The author says Method calls are � to � times slower than calling KL� directly� ���
page ���� and also The current implementation of esp does not yet have the required e�ciency�
especially in its execution speed� �next page�� In this particular language� the dedicated hardware
�PSI� and machine language �KL�� can compensate for the ine�ciency� but this implementation
approach may not be generally applicable� Furthermore� it seems more natural to use OOP for im�
plementation purposes and leave Prolog �or better some extended LP language� the full freedom
to model complex domain interrelations�

�

In addition to the implementation of SIMPOS� esp has been successfully used for the implemen�
tation of a natural language parser ���� using the De�nite Clause Grammar paradigm of Prolog�
Each grammatical category is abstracted as a class which makes it possible to use inheritance to
describe hierarchical classi�cations among syntactic categories� Probably there are other successful
applications of esp to KR tasks which I am not aware of�

��� Orient���K� Concurrency� OO and LP

Orient���K ���� ��� is a language and system developed by Mario Tokoro and Yutaka Ishikawa� It
is the realization of a methodology which the authors call Distributed Knowledge Object Modeling
�DKOM� �� � �but as mentioned before� I will not deal with the distributed aspects of Orient���K
here�� Authors give a justi�cation of DKOM based on a model of human behavior and knowledge
processing which� although somewhat simplistic� seems convincing� They argue that the human
behavior consists roughly of four steps

�� We perceive data through our acceptors and interpret it thus transforming it to information�

�� Then we infer conclusions using our knowledge and make decisions� We may initiate the
acquisition of more data and�or hypothesize and prove�

�� Based on these decisions and using our actuators� we perform actions�

�� Finally� we monitor the result of these actions �the performance of our decisions and the
inference process� and use this feedback to improve both our knowledge and our actions�

Authors point out that the action of previously developed KBS has been primarily limited to step
�� while it would be useful to model the other steps not only in a robotic application� but in any
large enough application which adopts the notion of interacting specialized experts which run their
own deduction processes and then act according to their beliefs� trying in cooperation to �nd a
solution�

Authors discuss the pros and cons of imperative vs� declarative execution mechanisms and then
turn to a discussion of di�erent modularization mechanisms� They point out that in Prolog and
in rule�based �production� systems� the unit of granularity is the single knowledge fragment �clause
or rule�� Having access to such a �relatively� �ne�granularity entities makes it easy to manipulate
the knowledge base �however �guring out what exactly is the e�ect of a modi�cation is not that
easy�� but creates problems with the management and extensibility of the KB� Furthermore� in a
typical ES such as R� �XCON�� ��! of the rules may have to be used to create� sequence and
maintain execution contexts and ��! of the conditions of other �operational� rules may be used to
ensure that they get activated only in the proper context �in other words� to contextualise the op�
erational rules�� Even worse� using the same form of representation for operational and for control
knowledge �i�e�� not observing Clancey�s distinction between structural and strategic knowledge��
obscures the semantics of the knowledge base and makes it less maintainable� Therefore� some
other mechanisms are needed for partitioning a large KB and contextualising the knowledge�

AnOrient���K system is a community of cooperating Knowledge Objects �KO�� each of which
has a behavior part� a knowledge part and a monitor part� The behavior part consists of imperative
methods like in Smalltalk which provide sequencing control and support the sequential execution

�

of tasks �although strictly speaking some of these methods may be executed in parallel with other
methods in the same or di�erent KO�� Here are also methods to access and modify the knowledge
part� The knowledge part is a local knowledge base of rules and facts like in Prolog which describe
the declarative properties of object�s internals� The monitor part consists of demons which get
activated upon certain accesses or modi�cations of methods or predicates �or other conditions� and
may be used to implement exception mechanisms and support for special cases� The three parts
provide for object�oriented� logic�based and access�oriented programming respectively� The overall
language looks like an extension of Smalltalk� and its implementation is more object�based than
logic�based �although technically it is quite di�erent from the implementation of Smalltalk��

As can be seen from this description� knowledge is localized inside the objects� As the authors
note �� � page ���� and as discussed in Section ���� this makes it di�cult to represent general rules
or interrelations among objects�� however �nding the exact degree in which Prolog should be left
to operate freely among objects is quite a subtle problem�

The de�nition of a KO class looks much like a Smalltalk class de�nition

DKO subclass� �AClass

instanceVariableNames� �i� i��

classVariableNames� �c� c��

AClass methodsFor� �instance methods�

�method part

AClass knowledgeFor� �instance KB�

�Horn clauses

AClass monitorsFor� �instance monitors�

�assertions �demons�

Here DKO is the root class of the system �and the one most usually used for subclassing�� AClass is
the newly created class� �The same three categories can be present for the metaclass of AClass��
It can be seen that the only� di�erence fro Smalltalk is the addition of the knowledgeFor� and
monitorsFor parts�

The method part� in addition to all Smalltalk statements� can contain also KB manipulation
methods
 addKB� appendKB and deleteKB which correspond to Prolog asserta� assertz and
retract� and KB access methods which interface to the knowledge part
 unify�query� which tries
the query and returns true or false� and forEachUnify�query� do� �block� which executes the
indicated block �group of statements� for each tuple satisfying the query�

The knowledge part contains Prolog �Horn� clauses �with somewhat di�erent syntax� and
may contain queries to other objects� as well as any Smalltalk message sends� The authors claim
that the latter preserves all the backtrack information�� but do not elaborate on this� Clauses may
also use any instance variables of the object� but from the Prolog side they look like constants
�the same as in esp�� An example giving a feel of the language follows �sending a mail message to
the brothers of somebody�

instanceVariables�

�john tom mike andy henry robert�

methodsFor� �sending mail�

sendToBrothersOf� x message� m

�

� y � �temporary variable�

forEachUnify�brother�x��y��

�Prolog query to KB part�

do� ��z � z sendMail� m��

knowledgeFor� �family relationship�

�rules�

brother��x��y� � f �

father��x�f�� father��y�f��

�facts�

father�john�henry��

father�tom�robert��

father�mike�robert��

father�andy�robert��

The monitor part is Orient���K�s most innovative development �in the context of OOP�LP�
demons have been used in frame systems long before that�� It serves as demon �gets activated upon
certain types of access�� supervisor �controls the concurrent execution� and guardian �ensures that
certain methods can only be called when the KO is in an appropriate state�� In its demon role�
the monitor part may contain methods �handlers� which get called when the appropriate condition
is present
 whenPredicateAdded� whenPredicateAppended� whenPredicateDeleted match the
corresponding KB manipulation methods� whenMethodAdded and whenMethodDeleted do the same
when the method part is manipulated� whenPredicateNeeded and whenNoPredicate serve as be�
fore� and if�failed� handlers �see Section ����� whenObjectNotExist and whenMessageNotAccepted
are used for error handlers� whenVariableAssociated and whenVariableEvaluated sanction read
and write access to instance variables respectively� In its supervisor role� the monitor part may
contain statements related to concurrent execution
 mutual exclusion and access control� static
and dynamic priorities� interrupt processing� For the guardian role� there are no speci�c language
constructs� because the existing ones are su�cient for most applications�

To try out the expressive power of Orient���K� authors have developed a solution to the
well�known Hazardous Spill Emergency Management Expert System example from the book of
Hayes�Roth� Waterman and Lenat Building Expert Systems� They comment that it was much
easier to develop the system in Orient���K than in Prolog� Lisp or Smalltalk alone
 in
Prolog they have had predicate name scoping problems� in Lisp they represented the domain
entities �buildings� chemicals and water sources� in lists and it was hard to add new entities� in
Smalltalk it would be necessary to code the inference engine and KR facilities and they could
hardly remain distributed �authors haven�t actually implemented it in Smalltalk��

Another development in Orient���K is a programming environment complete with browser�
editor� debugger and windowing system �presumably similar to the one of Smalltalk�� I don�t
know whether some large�scale KBS projects were completed using Orient���K� but it seems
equipped with everything necessary for the task�

The signi�cant advantage ofOrient���K over esp is thatOrient���K is a lot more expressive
and also seems more naturally implemented �with OOP put in the basis and LP implemeented on
top of it�� However an already mentioned problem of Orient���K �which will be elaborated upon
in Section ���� is the con�nement of knowledge in the limits of individual objects�

��� Object�Prolog� The Power of Uniformity

Object�Prolog���� developed in Hungary� is a very enlightening example of the sheer power of
Prolog� exposed in a very parsimonious and uniform approach�

Object�Prolog features only one kind of entities called worlds� which serve for instances�
classes� metaclasses and whatever else one needs� Worlds are uniquely named� names don�t have
to be simple atoms� they may be arbitrary ground �variable�less� terms� Each world has a local set
of Horn clauses �so again a world is a logic theory�� Worlds can be speci�ed statically� as in

world symphony��

is	a musical	piece�

composed	by bethoven�

endworld�

or created and �eshed out with knowledge dynamically

�	 createWorld�symphony���

addKnowledge�is	a musical	piece�

 symphony��

addKnowledge�composed	by bethoven�

 symphony��

�deleteKnowledge is also available�� It is important to note that this world creation and KB
manipulation is completely backtrackable� The

 operator denotes message send �query� to a
world� which in the case of addKnowledge happens to be a request to add a clause to the local KB�

The syntax ofObject�Prolog uses widely the in�x notation� for example john is	father	of

mary� not father�john�mary�� In the following examples� reserved words are in normal font� vari�
able and atom names are in typewriter font� and syntactic categories are in italic�

In Object�Prolog the user is given a generalized concept of inheritance and is free to ascribe
to it whatever names� concepts and properties s�he sees �t� This can accomodate the inheritance
relations between instance and class �instance�of�� class and superclass �is�a� kind�of� and class and
metaclass� The general form of inheritance in Object�Prolog is

world� inherits predicate from world� �
� condition ��

This says that all predicates uni�able with predicate which are true in world� will also hold in world�
�that is� world� will inherit them from world��� provided that condition holds �if present�� �More
precisely� since the inheritance is overriding� there should be no clauses in the inheriting world�
which unify with predicate or otherwise they will inhibit the clauses in the superworlds�� Here all
items in italics can be arbitrary Prolog terms� which gives enormous �exibility and power� A
number of examples follow to justify that claim

� melon inherits All from fruit�

Here All is simply a variable which uni�es with everything� it is not a special keyword�

� X inherits p�f�Y�� from Z�

Only clauses unifying with p�f�Y�� will be inherited�

� X inherits All from super�X�

In the form super�X� the star is a term constructor �syntactic connective�� so super�X is not
an atomic name but a term naming the superworld� This rule says that every world X will
inherit everything from world named super�X �presumably its one and only metaclass��

�

� X inherits All from Y �	 X is	a Y�

This says that a subworld inherits everything from �any of� its superworld�s� where the
inheritance is determined by the user�speci�ed relation is	a which may change dynamically
and even be backtracked�

Object�Prolog has some means for concurrent execution and interprocess communication
�borrowed from an earlier Hungarian development� T�Prolog�� Although I generally disregarded
the concurrent properties of the other languages described up to here� I will describe those of
Object�Prolog for the sake of the example which follows� The main concurrency primitives are

� createProcess �goal	 world

Creates a new process working on goal inside world which will terminate as soon as it proves
the goal or exhausts all possibilities�

� waitFor�message�
� send�message�

Blocks the process until some other process sends to the world of the waiting process some
message� uni�able with message��

� wait�condition

Blocks the process until the indicated condition becomes true�

� hold�time

Blocks the process for the indicated period of �model� not real� time�

Now the reader has the necessary information to appreciate the beauty of the example which
follows �a bank robbery scenario� and the complexity we can handle given only the limited means
described above

world bank�

safe	type wertheim�

safe	type chatwood�

safe	type millner�

endworld�

The bank uses di�erent types of safes�

world safe�

drill opens chatwood �	 hold�����

drill can	open chatwood�

oxygen opens millner �	 hold�����

oxygen can	open millner�

�� wertheim is very strong

endworld�

These di�erent safes have di�erent properties regarding their breakability�

world jim�

takes	part	in robbery�

robbery	partner dick�

��

climb	wall �	 hold�����

endworld�

world dick�

takes	part	in robbery�

robbery	partner jim�

climb	wall �	 hold����

endworld�

There are two partners�in�crime� one of them is more agile in climbing walls than the other�

world robber�

break	into �bank� Safe� �	 climb	wall�

safe	type Safe

 Bank� waitFor�Tool��

Tool opens Safe

 safe�

provide	tool	for�Safe� �	 wait�nonvar�Safe���

Tool can	open Safe

 safe� send�Tool��

endworld�

This is the typical behavior of a robber
 he will either break	into �enter the bank by climbing
the wall� choose a type of safe to break into� wait for the appropriate tools to be provided by his
partner and open the safe� or assist by providing the appropriate Tool for the particular Safe �wait
until the Safe type is determined �bound�� pick the proper Tool and then send it��

world mainWorld�

X inherits All from robber �	 X takes	part	in robbery�

get	the	money �	 One robbery	partner Another�

createProcess �break	into�bank�Safe�� One��

createProcess �provide	tool	for�Safe�� Another��

time	condition�

endworld�

This is the main world of the program� The �rst clause states that everybody who takes	part	in

robbery is a robber� The second clause is the entry point of the program� Given the goal
get	the	money� the program will �rst assign tasks to jim and dick �bind One to one of them
and Another to the other one�� then will run the two agents concurrently� One will try to break
into� while Another will try to provide him with the proper tool �actually I am too much animistic
here� the actual mechanics is that the process running in the world One will be trying to prove
the goal break	into� while the process running in the world Another will be trying to prove the
goal provide	tool	for�� According to the behavior speci�ed in the world robber �or we may
say according to his nature��� One will climb the wall �which will take him some time�� pick a
Safe to break into� tell the safe type to Another through the shared variable Safe and wait for
a Tool� After he gets the Tool� he will open the safe �again this will take time� and terminate�
Meanwhile Another will wait until the safe type is known� pick the proper tool� send it to One and
terminate� Finally the time	condition �unspeci�ed here� will be checked and if they had a good
timing� they will have got	the	money� Otherwise� Object�Prolog will backtrack and try other
solutions �assign roles to robbers in another way� pick some other safe to break etc���

So with a couple of primitive notions we wrote a ���line program and then the description of its
behavior took half a page� and it sounded like if the program was a quite intelligent entity �actually

��

two entities�� �Now� this may seem a vicious and illegal program� but maybe the police may use it
to simulate di�erent scenarios for breaking the bank and thus prevent them��

However� too much freedom and �exibility may leave the user without the needed support for
disciplined programming� The author clearly recognizes this �the picturesque words he uses to
describe the problem are As history has also proved sometimes	freedom without limits does not
always lead to Paradise��� Another problem is e�ciency� because these general mechanisms are
quite expensive to execute� Both problems can be specialized by taming the model� specializing
and limiting it in certain ways to �t particular user needs�

Although unsuitable in its present shape for industrial use� Object�Prolog is a most clear
example of the power of relatively simple LP mechanisms to model intelligent behavior�

��� pokrs� Prolog�based Object�oriented KR System

pokrs��� was developed in China in �� � I have only a very brief description of the system� so I
am including it here only for completeness� There is nothing special about this system �it is quite
similar to esp�� except that when loading a logic program into a local knowledge base� automatic
checks of the integrity of the inheritance hierarchy and checks for redundancy� subsumption and
contradiction among clauses are performed�

The language used in the paper substantially hinders its understanding
 a typical example is
�sic� The knowledge base organization is of taxonomically hierarchical architecture��

��	 KSL�Logic� Re
exive and Extensible

KSL�Logic ���� �� � is a LP extension of the OOP language KSL �which stands for Knowledge
Speci�cation Language�� developed in the OWL programming environment of Electronic Data
Systems Corp �EDS�OWL�� An explicit goal in the design of KSL has been the possibility to
integrate di�erent paradigms into the language� so KSL�Logic may be seen as merely an example
of one such integration� A fundamental means to achieve this paradigm�level extensibility is the
re�exivity of KSL� which means that language constructs are represented as data objects in the
language� So on the one hand� the language can operate on itself� which is most useful for the
implementation of such tools as compilers� debuggers and performance pro�lers� on the other hand
the language can be extended simply by addind new classes to the class hierarchy which describe
the new language constructs� This re�exivity has been achieved much like in Lisp
 by severely
restricting and making uniform the syntax of the language� Everything in KSL �method headers�
variable declarations� statements etc�� is represented by some form of lists� Part of the KSL�Logic
class hierarchy which shows that its language constructs are represented by classes is reproduced
below

LanguageObject

BehaviorObject

ClassBehavior

ExtMethod

SlotAccess

Method

PredicateBehavior

��

ConstantBehavior

VirtualSlotDefault

VariableBehavior

BuiltinPredicateBehavior

TrapObject

ExpressionObject

MessageExpr

VarAssignment

VarReference

ForExpr

WhileExpr

CommentExpr

ConditionalObject

LogicalExpr

RelationalExpr

ExistsExpr

ForAllExpr

PredicateExpr

HornClause

SwitchDomainExpr

CutExpr

The following example which computes the age of a person should give a sense for the �avor of the
language

��Method

��Selector Age�

��Class Person�

��ParmList ��List Self��

��VarList ��List BirthYear BirthMonth��

��ExprList ��List

�Set BirthYear �Year �BirthDate Self���

�Set BirthMonth �Month �BirthDate Self���

�When

��List �GreaterThan BirthMonth CurrentMonth�

�Subtract �Subtract CurrentYear BirthYear� ���

��List True

�Subtract CurrentYear BirthYear�

���

Looks pretty much like Lisp to me� The statements comprising the body of the method are
called expressions in KSL� so this is the what ExprList comes from� They have to be explicitly
packaged into a list� which is not quite connvenient� Method sends looks as follows
 Selector

�Receiver� and the lack of priority rules demands an excessive amount of parentheses� For me
it is particularly disturbing that the same names have to be pre�xed by various di�erent highly
mnemonic� symbols in di�erent contexts� The same method in Smalltalk is substantially shorter
and looks much better

��

Person methodsFor� �age�

age

�computes the person�s age�

� birthYear birthMonth �

birthYear �� self birthDate year�

birthMonth �� self birthDate month�

birthMonth
 currentMonth

ifTrue� �!currentYear	birthYear	��

ifFalse� �!currentYear	birthYear�

An example of a predicate �computing the ancestor relation� in KSL�Logic is

�HC �P ancestor �X �Y�

�P parent �X �Z� �P ancestor �Z �Y��

�here P stands for Predicate� and HC stands for Horn Clause��� Again� the corresponding Prolog
code is more appealing

ancestor�X�Y� �	 parent�X�Z�� ancestor�Z�Y��

De�nitely KSL needs a more user�friendly �actually programmer�friendly� compiler front�end�

The reader should note that the uniformity of KSL is of a quite di�erent nature then the
uniformity of Object�Prolog
 the former is at the syntax and language construct representation
level� while the latter is at the computational model level �because the computational model of
KSL�Logic is completely di�erent than the one of KSL��

The needed inference process �uni�cation� is implemented by objects �the initial activation of
a goal returns a search node object which is capable of performing backtracking and providing
the alternative clauses which may unify with the goal�� Although this is probably the easiest
way to implement resolution in an OOP language and although the presence of such an explicitly
represented proof tree �as opposed to one dynamically unfolded in time� may have some bene�ts
for e�g� smarter search strategies� it su�ers from ine�ciency problems�

The integration of LP and OOP seems good both at the execution level �predicate behaviors
can me freely mixed with procedural and�or functional behaviors� and the data level �predicate
arguments can be not simply logic variables or syntactically constructed terms� but arbitrarily
complex objects�

Despite its poor syntax�KSL�Logic solves a problem present in Orient���K
 the con�nement
of knowledge to the limits of one object� In KSL�Logic there is the notion of a domain object
 an
object which embodies the whole application domain� Of course� this object would be very complex
if it was to do the whole work alone� but it is assisted by its subobjects which represent application
subdomains� The predicate behaviors of the global domain object embody the most general and
global relationships in the application domain� This idea seems innovative� however I fail to see
why exactly the same could not be implemented in Orient���K�

Probably it is curious to note that the two papers ���� and ��� overlap in at least ��� of their
content� and the last ��� of ��� is included in � �� but the authors do not seem quite concerned
about this
 in ��� they refer to �����

��

��� Agents� Cooperating KBS

Agents��� is an architecture for KBS developed by Huang and Brandon at the University of
Wales� Cardi�� �It is completely di�erent from the Actors paradigm of Hewitt and Agha�� The
initial motivation for its creation was support for intelligent CAD �manufacturing design� systems
�though it can be used for other tasks as well� for example for modeling any decision�making
process which in the real world is cooperative� e�g� doctors on a joint consilium �� In engineering
design there are numerous considerations to be taken into account and correspondingly� numerous
di�erent knowledge sources to be exploited� On the other hand� present day expert systems have
to be focused in relatively narrow domain areas in order to be successful� This raises the issue
of having a number of systems �agents�� each of which is specialized in a certain domain area or
aspect and all of them cooperate to solve the overall problem�

As an architecture� Agents is very similar to Orient���K because it also adopts the notion
of agents having local knowledge bases �and these may be even written in di�erent private proof
languages��� which are packaged like objects and communicate with each other using a common
argument language� �I suppose that this is to be read imperative��� It di�ers from Orient���K
in the way it is implemented
 Orient���K is based on a Smalltalk�like object�oriented model�
while Agents is implemented by extending Prolog with OO constructs� The authors justify
their approach by the claim that Expertise has already been coded and accumulated in Prolog

in many �elds of engineering�� My opinion is that the other approach is more appropriate� the
authors point out themselves that there are two ways to see an Agents program
 either as a set
of agents or as a set of Prolog clauses which both provide predicate methods and the structuring
of agents �and therefore the order in which these clauses are speci�ed is important even for clauses
with di�erent predicate names�

agent�person��

sub�student�� � subclass

attribute�name��

attribute�age��

grandfather�X� �	 � a rule

X �	 father�Y�� � send query to X

Y �	 father�self��

endagent�

agent�student��

super�person�� � superclass

attribute�courses��

endagent�

Such overloading of clauses with both structuring and operational tasks seems both unnecessary
and inconvenient� �A feature of Agents can be seen in this example
 sending a query to the agent
X about its father in the rule for grandfather� Such sending a logical query to another object is
typical of OO LP� but the most often used syntax is X�father�Y���

Another di�erence from Orient���K is that in Agents object classes �which are called
agents�� whereas object instances are called objects� proper� are not implemented in the same
way instances are �unlike Smalltalk�� �And in addition there is some entity named the meta�
agent� which provides standard builtin predicates for the other agents�� While this compromises

��

the uniformity of implementation of the system� it may be bene�cial for some speci�c KR pur�
poses� as described below
 objects carry only attributes and values� whereas agents in addition to
attributes carry also methods and constraints� �Objects inherit features of agents through an in�
stance inheritance� so they need not have all these features themselves�� Now the authors conjecture
that a trace of such lightweight� objects� with only partially speci�ed or rawly estimated values�
may serve as a history of the solution development �versions of agents� and facilitate explanation�
solution revision and dead�end avoidance�

Another feature of Agents� named by the authors demons� also called constraints�� is that
predicate methods may have before�� after� and if�failed� subparts� much in the spirit of method
combination in Flavors and CLOS ���� Chapters ������ and ����� �the authors mention that
demons are a more general notion including active values� and say that this method combination is
only an example of what can be done in Agents�� These auxiliary submethods have the following
syntax

head �	 body� � primary

head �� body� � before

head �� body� � after

head 	� body� � if	failed

and the following semantics
 the current goal is matched against the head of the primary method� if
this succeeds than the before� submethod is tried and if it uni�es� it is executed� then the primary
method is executed� then the after� submethod is tried and eventually executed� If during this
process the primary or after� methods fail� then the if�failed� method is executed� Therefore
a goal fails if there is no clause for it in the current agent� or if the before� submethod fails� or
if the primary or after� methods fail and the if�failed� method also fails�� Some considerations
regarding the inheritance of auxiliary methods and whether variable bindings imposed by their
evaluation should a�ect the execution of the primary method� are discussed by the authors� Some
of the goals may be marked as askable� from the user
 if the user answers yes�� s�he is further
asked to supply values �if known� to the yet unbound variables in the goal� if the user answers
no� then normal Prolog backtracking takes place �the user may also ask why�� see explanation
facilities later on��

The communication between agents is accomplished using a blackboard� However the authors
do not justify this design decision neither do they discuss how does this agree with the message
passing as only way of communication� paradigm of OOP� The blackboard is used to hold the
global state� of the problem solving process and the beliefs common to all agents� It may serve
�but seemingly this has not been implemented� as a truth�maintenance medium �upon the detection
of a con�ict the participating agents are noti�ed and advised as to revise their beliefs�� as a task
agenda for tasks yet to be performed� as an advertising media� to display tasks for which there is no
known agent able to complete them� Another use of the blackboard is to store a structured network
of partial solutions �decisions� and their justi�cations which may be used in providing explanations
and for intelligent backtracking� Clearly this design decision complicates the initial model
 there
is this new entity �in addition to agents� which serves as a quite active communication medium�
Although not wrong�� this needs some justi�cation� Isn�t it possible to have an appointed agent
serving as a truth�maintainer� and facilitator� for the communication of other agents �or even
better� a number of such agents serving a number of small interest groups���

�Of course� these auxiliary methods are optional and may be omitted�

��

Now there is something unclear in the paper
 on the one hand� the description of the language
�which does not go to much more elaboration than the example given above� renders it quite simple
and not very powerful� On the other hand� authors further describe every agent as a quite complete
KBS with user interface� explanation facilities� knowledge acquisition facilities and so on�� While
such model �ts the title of the paper� clearly the language example given earlier is of a much lower
level of granularity� The transition from this relatively low�level language to the complete KBS
architecture is not described in the paper� How did the language facilitate the implementation of
the architecture�

The explanation facilities supposedly included in every agent are not quite sophisticated
 why�
explanations are given by dumping a restatement in English of the Prolog stack from the current
goal up to the topmost goal� how� explanations are given by showing a more complete part of the
proof tree� with leaf nodes marked as fact� or user input� or procedurally computed�� Although
of unclear utility� these explanation facilities suggest that it may be necessary to keep parts of the
proof and backtracking histories for this purpose�

The authors claim that the advantage of this system over Orient���K is that Orient���K
has complicated structure and therefore include many features that are di�cult to master� ��� page
����� Probably the authors here mean that it would be easier for a Prolog programmer to adapt
toAgents than toOrient���K� but the reverse of this is that it would be easier for a Smalltalk
programmer to adapt to Orient���K than to Agents� and furthermore the proper use of OOP
requires a revision of one�s programming habits anyway� I see the main bene�t of Agents in its
explicitly stated goal to support cooperating intelligent agents� and all other features described
above as not so important� Such features are probably even inappropriate for a basic OOP�LP
model for KR because they may be either not needed for a particular application or not sophisticated
enough and thus useless for another one�

A very important idea put forward by the authors is that some KBS applications �for exam�
ple engineering design� need multiview� multiversion� multicontext and multicomponent modeling
facilities� Indeed� the history why a certain design decision has been adopted may be no less im�
portant than the decision itself� because the decision may not be directly reusable in a di�erent
design� while the underlying reasons can be reused with a higher probability�

� Classic�kl�one� A Di�erent View

The work on kl�one started with the thesis of Ronald Brachman at Harvard in ��� and still
continues� As Brachman points out� since then there have been about �� systems developed on
the base of kl�one �mainly in Europe�� Others who participated extensively in the development
of these systems are Levesque and Patel�Schneider� Classic and kl�one ��� expose a very dif�
ferent point of view than the languages described up to now� Their point of view is much more
KR oriented� than it is language oriented� As Patel�Schneider argues in ����� the Object�Oriented
Programming Systems are exactly this	programming systems	and they are not very good in
knowledge representation� He describes another class of systems	Object�Based Knowledge Rep�
resentation Systems �OBKR�	which try to overcome some of the shortcomings of OOP systems
for KR� The problem with OOP is that they are operationally based �for example described in the
terms of their operation�� and not representationally based� The main practical drawback from

�Does every agent in a system need separate user interface� I doubt so�

��

this is that objects in OOP do not have knowledge� of their own purpose� thus the inheritance
relations between them are to be speci�ed manually� In an OOP system� where there is a hundred
or a thousand of classes� this may not be a problem� but in a complex KR system which accounts
for more subtle individual properties of objects� every object may need to have its own class and
this may make the manual classi�cation of these objects impossible� This objects� lack of awareness
of their purpose in OOP limits its expressive power for KR because e�g� one cannot de�ne a class
axiomatically �by the set of properties it has�� but have to create and attach it in the proper spot in
the class hierarchy by hand� Even further� most OOP systems �excluding e�g� the languages Beta
and Ei�el� allow properties of classes to be overriden down the class hierarchy �mostly because this
is sometimes needed by implementation inheritance� which purpose is code reuse�� compromising
its purpoose as a classi�cation hierarchy�

It has been long ago argued by Hayes� Moore and Frisch that frames �or for that purpose�
objects�� have little value for KR �except for their structuriing properties�� because they have no
epistemological commitment to their purpose� For example� no distinction has been made between
the de�nitional slots of frame �which make it to be of a particular class� and other casual� slots�

So in Classic and kl�one one of the most important modes of inference is subsumption
 the
automatic calculation of the inclusion relation between two sets of objects �two classes�� In a sense�
in OOP systems classes are represented by their extensionals �the set of objects comprising the
class or at least a manually de�ned structure and behavior suite for the class�� while in OBKR
systems classes are de�ned by their intensionals
 the set of properties that comprise the de�niton
of the class� Unfortunately� it is very hard to implement OBKR systems correectly and fully
�some inconsistencies in kl�one�based systems were not exposed until recently� and some of their
operations are intractable �computationally infeasible�� at least in particular settings� As Patel�
Schneider puts it ���� Developing a usable OBKR system thus consists mostly of inventing a
representational logic with the appropriate expressive and deductive power�� An example of such a
development is the use of a four�valued logic �with values true� false� unknown and contradictory��
which localise some phenomena �e�g� a contradiction� so that they don�t have to be propagated
through the whole network of propositions�

Classic and kl�one have concepts instead of classes� with roles instead of attributes� a role
taxonomy instead of inheritance hierarchy� and structural descriptions which give an explication of
the role of a concept in a particular relationship based on its connections to other concepts�

Classic is based on Lisp �host� below refers to this implementation language� and as a
language is very simple� its almost complete syntax is given below

�concept
 ��� THING � CLASSIC	THINF � HOST	THING � �concept name
 �

�AND �concept
�� �

�ALL �role
 �concept
� �

�AT	LEAST �number
 �role
� �

�AT	MOST �number
 �role
� �

�FILLS �role
 �individual name
� �

�SAME	AS �attribute
 �attribute
� �

�TEST	C �function
 �argument
�� �

�TEST	H �function
 �argument
�� �

�ONE	OF �individual name
�� �

�MIN �number
� � �MAX �number
�

�individual name
 �� �symbol
 � �string
 � �number
 �

�

"�host	language expression

The advantage of such seemingly restricted language is that it has a clean compositional semantics
which is required for the subsumption algorithm to be feasible�

Although very di�erent from the systems described in the previous section� Classic and kl�one
share with them two important features
 the object�orientation for knowledge domain steructur�
ization and the employment of logic �which in the previous systems is more LP� for computation�

� Advanced Special	Purpose Logics

There is an abundance of non�classic logics for di�erent aspects of the material world� developed
by researchers in mathematics and philosophy� which wait for their application to KBS� These
include Temporal Logic to represent time� di�erent common�sense Physics Logics to reason about
the physical properties of the world �some of these are not yet well formalised�� Fuzzy Logic to
deal with uncertainty� Epistemic Logic to reason about beliefs of intelligent agents� Autoepistemic
Logic to reason about agents� beliefs about their own beliefs� Deontic Logic to capture the notions
of permission� prohibition and obligation� Modal Logic about di�erent possible developments of the
state of a�airs� Dynamic Logic to capture state change� etc� etc�

Some of these logics are plagued by paradoxes and inconsistencies� for some there are no compu�
tationally feasible models yet� some are not fully formalised� some will be very di�cult to integrate
but nevertheless I believe that they provide a very valuable layer of abstractions which should be
used in KR tasks� Logic Programming is not only Prolog� it encompasses all attempts to implant
formal logic theories into computing�

Although beyond the scope of this paper� I deemed these ideas signi�cant enough to deserve a
separate section�

 Summary and Discussion

The paper surveys a number of OOP�LP languages for KR and contrasts them to the Classic
approach� However my goal was not to determine which of the two is the right� way to support a
KR system� just to argue that LP augmented with the structuring features of OOP �or� conversely�
OOP made more intelligent by the inference abilities of LP�� is an appropriate way�

Another very important feature which is needed for knowledge bases is object persistence �one
cannot have a knowledge base without �rst having a database�� A lot of research in Deductive
Databases has been performed by the LP community� Object�Oriented Databases have gone even
further in the industrial aspect� but there seems to be a lag in their theoretical development
�developments regarding the foundations of object updates and changing state have been undergone
only recently�� The �rst two conferences in the integrated area of Deductive and Object�Oriented
Databases were held in �� � and ����� However this topic is out of the scope of the current paper�

So� as I see it� the ideal �at present� symbol�level basis for Knowledge Representation would
be a Deductive Object�Oriented Database with versatile programming language� stable and well�
founded formal semantics and non�classic logics �temporal� spatial� deontic etc�� for special�purpose
modeling� extensibility for inclusion of other paradigms �without compromising the semantics�� and

��

possibilities for distributed computing� In my opinion� we are about �ve years from the time when
something like this will be commercially available� and probably �� years more until it is widely
adopted in industry�

References

��� Fu an Chen Yi�fen and Zhu� POKRS
 A Prolog�based object�oriented knowledge represen�
tation system� In �� IEEE International Conference on Systems	 Man	 and Cybernetics�
pages � �"� � Beijing�Shenyang� China� August �� �

��� Daniel Bobrow� If prolog is the answer� what is the question� In International Conference
on Fifth Generation Computer Systems �FGCS��
� pages �� "���� ICOT� �� ��

��� Ronald Brachman� Alexander Borgida� Deborah McGuinness� Peter Patel�Schneider� and Lori
Resnick� The Classic knowledge representation system or� kl�one
 The next generation�
In International Conference on Fifth Generation Computer Systems� pages ����"����� ICOT�
Japan� �����

��� T� Chikayama� ESP"Extended Self�contained Prolog"as a preliminary kernel language of
Fifth Generation computers� New Generation Computing� �
��"��� �� ��

��� T� Chikayama� Unique features of ESP� In International Conference on Fifth Generation
Computer Systems� pages ���"�� � Tokyo� November �� ��

��� A� Doman� Object�Prolog
 Dynamic object�oriented representation of knowledge� In
T� Henson� editor� SCS Multiconference on Arti�cial Intelligence and Simulation� The Di�
versity of Applications� pages �" � San Diego� CA� February �� �

��� G� Q� Huang and J� A� Brandon� Agents
 Object�oriented Prolog system for cooperating
knowledge�based systems� Knowledge�Based Systems� ����
���"���� June �����

� � M� S� Ibrahim and S� W� Woyak� An object�oriented environment for multiple AI paradigms�
In Second International Conference on Tools for AI� pages ��" �� Herndon� VA� November
�����

��� Mamdouh H� Ibrahim and Fred A� Cummins� KSL�Logic
 Integration of logic with objects�
In ���� IEEE International Conference on Computer Languages� pages �� "���� New Orleans�
LA� March ����� IEEE Computer Society Press�

���� Mamdouh H� Ibrahim and Fred A� Cummins� Objects with logic� In Cooperation� ACM �th
Annual Computer Science Conference� pages �� "���� Washington� DC� February �����

���� Y� Ishikawa and M� Tokoro� Concurrent object�oriented knowledge representation language
Orient���K
 Its features and implementation� In OOPSLA��� Portland� OR� September
�� ��

���� Y� Ishikawa and M� Tokoro� Orient���K
 A language with multiple paradigms in the ob�
ject framework� In Nineteenth Annual Hawaii International Conference on System Sciences�
volume II
 Software Track� Honolulu� HI� January �� ��

��

���� R� Iwanaga and O� Nakazawa� Development of the object�oriented logic programming language
CESP� Oki Technical Review� � �����
��"��� November �����

���� Peter Jackson� Introduction to Expert Systems� Addison�Wesley International Computer Sci�
ence Series� second edition� �����

���� Francis G� McCabe� Logic � Objects� International Series in Computer Science� Prentice�Hall�
�����

���� Hideo Miyoshi and Koichi Furukawa� Object�oriented parser in the logic programming lan�
guage ESP� In Natural Language Understanding and Logic Programming	 First International
Workshop� pages ���"���� Rennes� France� September �� �� North�Holland�

���� P� F� Patel�Schneider� An approach to practical object�based knowledge representation sys�
tems� In Twenty First Annual Hawaii International Conference on System Sciences� volume
II
 Software Track� Honolulu� HI� January �� �

�� � M� Tokoro and Y� Ishikawa� An object�oriented approach to knowledge systems� In Interna�
tional Conference on Fifth Generation Computer Systems �FGCS��
� pages ���"���� ICOT�
Japan� �� ��

��

