Object-Oriented and Logic-Based
IKnowledge Representation

Vladimir Alexiev*
Computing Science Department
University of Alberta
Edmonton, Alberta T6G 2H1T

April 1993

Abstract

This paper is a survey of a number of languages/systems based on both Object-Oriented
and Logic Programming and designed expressly for Knowledge Representation tasks. My goal
in the paper is to argue that the integration of these two paradigms (particularly the synergism
that emerges from such an integration) forms a stable basis for Knowledge Representation at the
symbolic level. I try to support this claim both by examples from the papers surveyed and by
considerations in a more general context. Some more advanced topics concerning special-purpose
non-classic logics are also discussed.

1 Introduction

Since mid-eighties the Object-Oriented (O0) paradigm has established itself as the most efficient
(up to now) way to cope with the scale and complexity of large applications. KBS were one of
the first to employ this paradigm exactly because they are typically large and complex. First
in the Lisp community (LOOPS, Fravors, CLOS) and then in industry (KEE, ART, NEXPERT-
OBJECT), OOP was making its way. An important side benefit which OOP brings to KBS is that all
components of a KBS—knowledge base, inference engine, user interface etc.—can be implemented
uniformly using OOP.

However, putting aside its software engineering merits, OOP uses the same old imperative mode
of programming which is used in FORTRAN, PascaL and C. Since it is inadequate for most KR
tasks, other devices such as rule-, constraint- and access-based programming were employed. Again
the LisP community was the first to experiment with these ideas. Fortunately OOP, though it does
not embody or encourage the non-imperative style, does not hamper it either: OOP seems largely
orthogonal to this aspect. The Al community was familiar with something like OOP (Minsky’s
frames) about a decade before that time, but LOOPS and CLOS were the first to use OOP uni-
formly and systematically and to implement such important aspects as inheritance, message passing
and polymorphism.

Another paradigm whose application in Al and KBS always has had numerous proponents
and opponents is Logic Programming (LP). LP is seen advantageous for KR applications for the
following reasons:



o LP is declarative: its user only has to state what is known about the problem domain and
what is the goal, but does not has to state explicitly how to go from the one to the other.

e (Some of) The LP languages possess a clear and well-founded logic semantics which may
have numerous applications ranging from algorithm complexity estimations to metareasoning
about the properties of programs and knowledge bases.

However the opponents of LP state that LP is insufficient for AI applications because other con-
siderations from cognitive science, psychology, systems science, causal models, elementary physics
etc. etc. are more important. Although possibly true, this statement seems mis-aimed, because
there is nothing in LP to prevent us from taking these considerations into account. It is true that
logic is only a part of our understanding of the world, but nevertheless it is an important part.

A lot of work in the direction of using PrROLOG for intelligent applications has been done
under the auspices of the Fifth Generation Computer Systems (FGCS) project of Japan. It has
been recognized very early in this project that PROLOG itself does not possess the needed software
engineering devices to implement a large-scale KBS. In his paper “If ProLoG Is The Answer, What
Is The Question?” [2], Daniel Bobrow argues that PROLOG is to be coupled with other paradigms
(function-, rule-, access- and object-oriented) in order to be successful. Different paradigms are
good in the representation of different things and “One should not be forced (metaphorically) to
pry up nails with a screwdriver”. Of course, one of the most important things when integrating
multiple paradigms is to exploit fully the potential synergism by having a smooth integration of
the paradigms, both in terms of data, execution control and underlying philosophies.

In addition to the work done for reshaping PROLOG to fit KR tasks, another important direction
of the FGCS project is towards concurrent execution of PRoLOG (for example the so-called “com-
mitted choice parallelism” of Guarded Horn Clauses). It turns out that it is very easy to model
objects using concurrently executing PROLOG predicates which pass messages (requests to prove a
goal) to each other through potentially unbound and partly-evaluated message queues (this means
that a predicate (or object, or agent) starts fulfilling a request as soon as there is at least one mes-
sage in the queue and does not wait for the queue to become completely known). After executing
a request, the agent recreates itself by calling itself recursively with the rest of the message queue
as argument. The effect of inheritance in OOP can be achieved by the actor passing (“delegating”)
the requests it cannot handle to one or more of its “proxys”. There are numerous languages (both
inside and outside of FGCS) based on this model (spooL, VuLcAN, scoop, PoLka, A’UM), which
is similar to the AcTORS model of Carl Hewitt and Gul Agha. However I do not cover this model
in the paper for two reasons:

o [ believe that before we go into concurrent computations, we need to have a good understand-
ing of the problems in the sequential case. We should not start tackling the problems of how
to parallelize a computation before we have solved its proper problems.

o Although the forementioned is a good model of OOP, it is only a model, which does not
possess the software engineering (size-taming) merits of OOP.

Two of the languages surveyed below are concurrent, but I simply disregard this aspect.

There is another very important non-imperative programming style: Functional Programming
(and also Fquational Programming). This particular paper talks about PRoLOG and not about Lisp



only because of my personal preferences: I like PROLOG better because I believe that PROLOG is
closer to its theoretical roots than LisP is to A-calculus. Of course, having the possibility to write
equations and use functions is a most welcome convenience and it can be easily implemented e.g.
like in [15]. In normal PROLOG, one has to write e.g. for the definition of the factorial function

fact(0,1).
fact(X,Y) :- X>0, X1 is X-1, fact(X1,Y1), Y is Xx*V1.

instead of the much more natural

fact(0)
fact(X)

1.
Xxfact(X-1) :- X>0.

I would like to state explicitly my opinion that we should not restrict ourselves to PrROLOG
(notwithstanding that most of the surveyed languages are PROLOG-based ), whose fixed backtrack-
ing depth-first mode of search for solutions is clearly inappropriate for some KB applications and
who uses for data structuring only uninterpreted (syntactic) terms and manipulates them (con-
structs terms and extracts parts of terms) using syntax-based (textual) unification. On one hand,
localization of the operation of PROLOG into a single object may diminish the first problem, and
allowing arbitrary objects as predicate arguments with unification taking into account the classi-
fication relations between these objects may solve the second problem. On the other hand, LP is
not only PrRoLoG, and Logic in Al is not only LP (I touch some additional topics in Section 4).

There is much more work to be done in developing a formal semantics of the basic notions of
object-oriented computing (mutable state, object identity, inheritance etc.) which would be most
useful both for Deductive Object-Oriented Databases and for Knowledge Bases. of these, muta-
ble state seems most difficult to express in logic terms, because classic logic does not have the
concept of “memory” or “state”: a logical formula always has the same meaning, independent on
the context or time in which we evaluate it (the technical term for this is “referential transparency”).

The rest of the paper is organized as follows: in the next section I survey a number of object-
oriented and logic-based languages for KR, comparing and contrasting them. In Section 3, I describe
a quite different view on the role of objects in KR due to Ronald Brachman. In Section 4 I touch
upon some advanced non-classical logics which may very well be applied in KR. The last section
contains a summary of the claims of the paper and a discussion about what else would be useful
to have in a general-purpose KR framework.

2 Languages Employing OOP+LP for KR

In this section I briefly describe a number of languages which use both OOP and LP and are
expressly designed for KR and/or have been successfully used for KR tasks. For each language, I
give a flavor of its syntax and semantics (typically by a small example), compare it to some of the
other languages and give an account of its uses for KR known to me. My goal in this section is
not that much to delve in the technical details of each language and the differences between them
(some of these differences are quite subtle), but to convince the reader that the merger of OOP+LP
gives a viable platform for KR.



Most of the material is adapted from the indicated papers, but I also wrote down my consid-
erations and observations (generally all negative opinions about a language are not those of the
authors of the language but are mine).

The reader is supposed to have some familiarity with PROLOG and SMALLTALK (or some other
0O language). The languages are presented in chronological order.

2.1 ESpP: The Fifth Generation

EsP (Extended Self-contained ProLOG) [4, 5, 13] was not explicitly designed for KR; it is the sys-
tem description language of SIMPOS (Sequential Inferential Machine Programming and Operating
System), the operating system of the flagship machine of the FGCS project, the PSI (Personal
Sequential Inference). It is built over the ProLOG-like machine language of PSI, KLO (Kernel
Language version 0, the current version is KL1); some of the specialized commands and builtin
predicates of KLO were specifically designed and tuned up to suit Esp. ESP is an OO language,
with mutable state, object classes and hierarchical multiple-inheritance structures. It has been
recognized that these features of Esp very much simplified and streamlined the implementation of
SIMPOS, and could be very useful for other tasks (mainly those requiring hierarchically represented
knowledge) as well.

ESP is translated into KLO, therefore ESP is PROLOG-based, as opposed to OOP-based. This
means that all the OO notions in ESp are to be represented in KLO (which is basically PrRoLOG).
But the converse is also true in some degree, because logic theories (sets of PROLOG predicates) are
mapped to objects, a notion which recurs many times in subsequent languages. Another seminal
notion introduced in ESP is having the ability to send a query (request to prove a goal) to an object
and the treatment of this as message send. So there are two types of queries (predicate calls) in EsP:
local/primitive ones, which are executed in the context of the current object (theory) and message
sends (e.g. :open(Door)), directed to a particular receiver (here the variable Door is supposed to
be bound to an object which can handle the message open).

Objects can have (in addition to sets of predicates) slots, or attributes which contain values
changing with time. The eventual state change inside an object in response to a message send is
implemented using some LisP-like construction and modification primitives present in KL0: cons,
rplaca, etc. This is not accounted for by the logic semantics of PROLOG (the author says “Slot
values are constants from the LP point of view”). The author agrees that this does not have a
clear logic semantics (it “falls out of pure logic”), but states that since such an ability is immensely
needed in a task like an operating system, they had to make a compromise. Indeed, not only at
that time, but even now, there is no widely accepted logic to model mutable state. So the author
was right to mention “We didn’t have time to wait for such an innovation” [5, page 293].

EsP does implement in full the notions of OOP. It has metaclasses whose logic theories (methods)
are responsible for the creation of new objects. It has multiple inheritance of an “accumulating
type”: the full logic theory of a class consists of the clauses stated explicitly in that class, merged
with all the clauses defined in its superclasses. Now this creates some problems because adding
clauses to a class is monotonic (the set of true consequences (provable goals) only increases), while
for some KR applications non-monotonicity is critical. For example, we may want penguin to be
a subclass of bird and inherit all properties of birds, except that penguins do not fly. This can
be solved easily by an “overriding-mode” inheritance (if there is some clause in the subclass for a
certain predicate, its presence disables all the clauses for the same predicate in its superclasses),



but the solution adopted in ESP relies on the extended “cut” predicate available in KLO:

class bird has
instance
:fly(Bird) .

end.
class penguin has nature bird;
instance

:fly(Penguin) :- !, fail.

end.

Here the cut (!) predicate commits the execution to the clause for £1y found in the penguin class
(which subsequently fails, i.e. returns false) and does not let it try the clause in the class bird. This
“deep” (multilevel) cut is also useful for exception handling mechanisms needed in an operating
system.

ESP has “demon” methods (“before” and “after” methods), very similar to the ones described
in Section 2.6 (or better said, those ones are similar to these here, taking into account the years
of publication). Another useful facility of Esp is a powerful macro language which is written in
PrOLOG and takes into account the specifics of PROLOG: the expansion of a macro definition may
need to be distributed before and after the place where it is used (or even in the beginning and
the end of the clause body) and depends on whether it is used in the clause head or body. Using
this macro facility, a convenient function sublanguage has been developed, for example one may
use infix + in the head of a clause:

inc(X,X+1).
and get the following expansion in the body of the clause:
inc(X,Y) :- add(X,1,Y).
or use it in the body:
., p(X+1),
and get the expansion just before the literal:
., add(Xx,1,Y), p(Y),

Concerning the implementation of EsP, I believe that a more appropriate approach is to im-
plement LP on top of OOP (or make them equally basic and integrate them), and not OOP on
top of LP. The author says “Method calls are 3 to 4 times slower than calling KLO directly” [5,
page 297] and also “The current implementation of EsP does not yet have the required efficiency,
especially in its execution speed” [next page|. In this particular language, the dedicated hardware
(PSI) and machine language (KL0) can compensate for the inefficiency, but this implementation
approach may not be generally applicable. Furthermore, it seems more natural to use OOP for im-
plementation purposes and leave PROLOG (or better some extended LP language) the full freedom
to model complex domain interrelations.



In addition to the implementation of SIMPOS, EsP has been successfully used for the implemen-
tation of a natural language parser [16] using the Definite Clause Grammar paradigm of PrRoLOG.
Each grammatical category is abstracted as a class which makes it possible to use inheritance to
describe hierarchical classifications among syntactic categories. Probably there are other successful
applications of Esp to KR tasks which I am not aware of.

2.2 ORrIENT84/K: Concurrency, OO and LP

ORIENT84 /K [11, 12] is a language and system developed by Mario Tokoro and Yutaka Ishikawa. It
is the realization of a methodology which the authors call Distributed Knowledge Object Modeling
(DKOM) [18] (but as mentioned before, I will not deal with the distributed aspects of ORIENT84 /K
here). Authors give a justification of DKOM based on a model of human behavior and knowledge
processing which, although somewhat simplistic, seems convincing. They argue that the human
behavior consists roughly of four steps:

1. We perceive data through our acceptors and interpret it thus transforming it to information.

2. Then we infer conclusions using our knowledge and make decisions. We may initiate the
acquisition of more data and/or hypothesize and prove.

3. Based on these decisions and using our actuators, we perform actions.

4. Finally, we monitor the result of these actions (the performance of our decisions and the
inference process) and use this feedback to improve both our knowledge and our actions.

Authors point out that the action of previously developed KBS has been primarily limited to step
2, while it would be useful to model the other steps not only in a robotic application, but in any
large enough application which adopts the notion of interacting specialized experts which run their
own deduction processes and then act according to their “beliefs” trying in cooperation to find a
solution.

Authors discuss the pros and cons of imperative vs. declarative execution mechanisms and then
turn to a discussion of different modularization mechanisms. They point out that in PRoLOG and
in rule-based (production) systems, the unit of granularity is the single knowledge fragment (clause
or rule). Having access to such a (relatively) fine-granularity entities makes it easy to manipulate
the knowledge base (however figuring out what exactly is the effect of a modification is not that
easy), but creates problems with the management and extensibility of the KB. Furthermore, in a
typical ES such as R1 (XCON), 10% of the rules may have to be used to create, sequence and
maintain execution contexts and 20% of the conditions of other (operational) rules may be used to
ensure that they get activated only in the proper context (in other words, to contextualise the op-
erational rules). Even worse, using the same form of representation for operational and for control
knowledge (i.e., not observing Clancey’s distinction between structural and strategic knowledge),
obscures the semantics of the knowledge base and makes it less maintainable. Therefore, some
other mechanisms are needed for partitioning a large KB and contextualising the knowledge.

An ORIENT84 /K system is a community of cooperating Knowledge Objects (KO), each of which
has a behavior part, a knowledge part and a monitor part. The behavior part consists of imperative
methods like in SMALLTALK which provide sequencing control and support the sequential execution



of tasks (although strictly speaking some of these methods may be executed in parallel with other
methods in the same or different KO). Here are also methods to access and modify the knowledge
part. The knowledge part is a local knowledge base of rules and facts like in PROLOG which describe
the declarative properties of object’s internals. The monitor part consists of demons which get
activated upon certain accesses or modifications of methods or predicates (or other conditions) and
may be used to implement exception mechanisms and support for special cases. The three parts
provide for object-oriented, logic-based and access-oriented programming respectively. The overall
language looks like an extension of SMALLTALK, and its implementation is more object-based than
logic-based (although technically it is quite different from the implementation of SMALLTALK).

As can be seen from this description, knowledge is localized inside the objects. As the authors
note [18, page 624] and as discussed in Section 2.5, this “makes it difficult to represent general rules
or interrelations among objects”, however finding the exact degree in which PrRoL0OG should be left
to operate freely among objects is quite a subtle problem.

The definition of a KO class looks much like a SMALLTALK class definition:

DKO subclass: #AClass
instanceVariableNames: ’il i2’
classVariableNames: ’cl c2’

AClass methodsFor: ’instance methods’
<method part>

AClass knowledgeFor: ’instance KB’
<Horn clauses>

AClass monitorsFor: ’instance monitors’
<agssertions (demons)>

Here DKO is the root class of the system (and the one most usually used for subclassing), AClass is
the newly created class. (The same three categories can be present for the metaclass of AClass.)
It can be seen that the “only” difference fro SMALLTALK is the addition of the knowledgeFor: and
monitorsFor parts.

The method part, in addition to all SMALLTALK statements, can contain also KB manipulation
methods: addKB, appendKB and deleteKB which correspond to PROLOG asserta, assertz and
retract; and KB access methods which interface to the knowledge part: unify(query) which tries
the query and returns true or false, and forEachUnify(query) do: [block] which executes the
indicated block (group of statements) for each tuple satisfying the query.

The knowledge part contains PrRoLoG (Horn) clauses (with somewhat different syntax) and
may contain queries to other objects, as well as any SMALLTALK message sends. The authors claim
that the latter “preserves all the backtrack information”, but do not elaborate on this. Clauses may
also use any instance variables of the object, but from the PROLOG side they look like constants
(the same as in ESP). An example giving a feel of the language follows (sending a mail message to
the brothers of somebody):

instanceVariables:
’john tom mike andy henry robert’
methodsFor: ’sending mail’
sendToBrothersOf: x message: m



| vy | "temporary variable"
forEachUnify(brother(x,?y))
"Prolog query to KB part"
do: [:z | z sendMail: m].
knowledgeFor: ’family relationship’
"rules"
brother(?x,?y) | £ |
father(?x,f), father(?7y,f).
"facts"
father(john,henry).
father(tom,robert).
father(mike,robert).
father(andy,robert).

The monitor part is ORIENT84 /K’s most innovative development (in the context of OOP+LP;
demons have been used in frame systems long before that). It serves as demon (gets activated upon
certain types of access), supervisor (controls the concurrent execution) and guardian (ensures that
certain methods can only be called when the KO is in an appropriate state). In its demon role,
the monitor part may contain methods (handlers) which get called when the appropriate condition
is present: whenPredicateAdded, whenPredicateAppended, whenPredicateDeleted match the
corresponding KB manipulation methods; whenMethodAdded and whenMethodDeleted do the same
when the method part is manipulated; whenPredicateNeeded and whenNoPredicate serve as “be-
fore” and “if-failed” handlers (see Section 2.6), whenObjectNotExist and whenMessageNotAccepted
are used for error handlers, whenVariableAssociated and whenVariableEvaluated sanction read
and write access to instance variables respectively. In its supervisor role, the monitor part may
contain statements related to concurrent execution: mutual exclusion and access control, static
and dynamic priorities, interrupt processing. For the guardian role, there are no specific language
constructs, because the existing ones are sufficient for most applications.

To try out the expressive power of ORIENT84 /K, authors have developed a solution to the
well-known Hazardous Spill Emergency Management Expert System example from the book of
Hayes-Roth, Waterman and Lenat Building Fxpert Systems. They comment that it was much
easier to develop the system in ORIENT84/K than in ProrLoG, LisP or SMALLTALK alone: in
ProroG they have had predicate name scoping problems, in Lisp they represented the domain
entities (buildings, chemicals and water sources) in lists and it was hard to add new entities, in
SMALLTALK it would be necessary to code the inference engine and KR facilities and they could
hardly remain distributed (authors haven’t actually implemented it in SMALLTALK)

Another development in ORIENT84 /K is a programming environment complete with browser,
editor, debugger and windowing system (presumably similar to the one of SMALLTALK). I don’t
know whether some large-scale KBS projects were completed using ORIENT84 /K, but it seems
equipped with everything necessary for the task.

The significant advantage of ORIENT84 /K over EsP is that ORIENT84 /K is a lot more expressive
and also seems more naturally implemented (with OOP put in the basis and LP implemeented on
top of it). However an already mentioned problem of OrRIENT84 /K (which will be elaborated upon
in Section 2.5) is the confinement of knowledge in the limits of individual objects.



2.3 OBIECT-PROLOG: The Power of Uniformity

OBJECT-PROLOG[6], developed in Hungary, is a very enlightening example of the sheer power of
PRrROLOG, exposed in a very parsimonious and uniform approach.

OBIECT-PROLOG features only one kind of entities called worlds, which serve for instances,
classes, metaclasses and whatever else one needs. Worlds are uniquely named; names don’t have
to be simple atoms, they may be arbitrary ground (variable-less) terms. Each world has a local set
of Horn clauses (so again a world is a logic theory). Worlds can be specified statically, as in

world symphony9.
is-a musical-piece.
composed-by bethoven.
endworld.

or created and fleshed out with knowledge dynamically:

7- createWorld(symphony9),
addKnowledge(is-a musical-piece) >> symphony9,
addKnowledge(composed-by bethoven) >> symphony9.

(deleteKnowledge is also available). It is important to note that this world creation and KB
manipulation is completely backtrackable. The >> operator denotes message send (query) to a
world, which in the case of addKnowledge happens to be a request to add a clause to the local KB.

The syntax of OBJIECT-PROLOG uses widely the infix notation, for example john is-father-of
mary, not father(john,mary). In the following examples, reserved words are in normal font, vari-
able and atom names are in typewriter font, and syntactic categories are in italic.

In OBIECT-PROLOG the user is given a generalized concept of inheritance and is free to ascribe
to it whatever names, concepts and properties s/he sees fit. This can accomodate the inheritance
relations between instance and class (instance-of ), class and superclass (is-a, kind-of ) and class and
metaclass. The general form of inheritance in OBIECT-PROLOG is

world! inherits predicate from world2 [ :- condition |].

This says that all predicates unifiable with predicate which are true in world2 will also hold in world1
(that is, world! will inherit them from world?), provided that condition holds (if present). (More
precisely, since the inheritance is overriding, there should be no clauses in the inheriting world1
which unify with predicate or otherwise they will inhibit the clauses in the superworlds). Here all
items in ¢talics can be arbitrary PROLOG terms, which gives enormous flexibility and power. A
number of examples follow to justify that claim:

e melon inherits A1l from fruit.
Here A11 is simply a variable which unifies with everything, it is not a special keyword.

e X inherits p(£(Y)) from Z.
Only clauses unifying with p(£(Y)) will be inherited.

e X inherits A1l from super*X.
In the form super*X, the star is a term constructor (syntactic connective), so super*X is not
an atomic name but a term naming the superworld. This rule says that every world X will
inherit everything from world named super*X (presumably its one and only metaclass).



e X inherits A11 from Y :- X is-a Y.
This says that a subworld inherits everything from (any of) its superworld(s) where the
inheritance is determined by the user-specified relation is-a which may change dynamically
and even be backtracked.

OBIECT-PROLOG has some means for concurrent execution and interprocess communication
(borrowed from an earlier Hungarian development, T-ProLoG). Although I generally disregarded
the concurrent properties of the other languages described up to here, I will describe those of
OBIECT-PROLOG for the sake of the example which follows. The main concurrency primitives are:

e createProcess (goal, world)
Creates a new process working on goal inside world which will terminate as soon as it proves
the goal or exhausts all possibilities.

o waitFor (messagel), send(message?2)
Blocks the process until some other process sends to the world of the waiting process some
message? unifiable with messagel.

e wait (condition)
Blocks the process until the indicated condition becomes true.

e hold(time)

Blocks the process for the indicated period of (model, not real) time.

Now the reader has the necessary information to appreciate the beauty of the example which
follows (a bank robbery scenario) and the complexity we can handle given only the limited means
described above:

world bank.
safe-type wertheim.
safe-type chatwood.
safe-type millner.
endworld.

The bank uses different types of safes.

world safe.
drill opens chatwood :- hold(30).
drill can-open chatwood.
oxygen opens millner :- hold(40).
oxygen can-open millner.
\7 wertheim is very strong
endworld.

These different safes have different properties regarding their breakability.

world jim.
takes-part-in robbery.
robbery-partner dick.

10



climb-wall :- hold(10).
endworld.
world dick.
takes-part-in robbery.
robbery-partner jim.
climb-wall :- hold(5).
endworld.

There are two partners-in-crime; one of them is more agile in climbing walls than the other.

world robber.
break-into (bank, Safe) :- climb-wall,
safe-type Safe >> Bank, waitFor(Tool),
Tool opens Safe >> safe.
provide-tool-for(Safe) :- wait(nonvar(Safe)),
Tool can-open Safe >> safe, send(Tool).
endworld.

This is the typical behavior of a robber: he will either break-into (enter the bank by climbing
the wall, choose a type of safe to break into, wait for the appropriate tools to be provided by his
partner and open the safe) or assist by providing the appropriate Tool for the particular Safe (wait
until the Safe type is determined (bound), pick the proper Tool and then send it).

world mainWorld.
X inherits All from robber :- X takes-part-in robbery.
get-the-money :- One robbery-partner Another,
createProcess (break-into(bank,Safe), One),
createProcess (provide-tool-for(Safe), Another),
time-condition.
endworld.

This is the main world of the program. The first clause states that everybody who takes-part-in
robbery is a robber. The second clause is the entry point of the program. Given the goal
get-the-money, the program will first assign tasks to jim and dick (bind One to one of them
and Another to the other one), then will run the two agents concurrently. One will try to break
into, while Another will try to provide him with the proper tool (actually I am too much animistic
here; the actual mechanics is that the process running in the world One will be trying to prove
the goal break-into, while the process running in the world Another will be trying to prove the
goal provide-tool-for). According to the behavior specified in the world robber (or we may
say “according to his nature”), One will climb the wall (which will take him some time), pick a
Safe to break into, tell the safe type to Another through the shared variable Safe and wait for
a Tool. After he gets the Tool, he will open the safe (again this will take time) and terminate.
Meanwhile Another will wait until the safe type is known, pick the proper tool, send it to One and
terminate. Finally the time-condition (unspecified here) will be checked and if they had a good
timing, they will have got-the-money. Otherwise, OBIECT-PROLOG will backtrack and try other
solutions (assign roles to robbers in another way, pick some other safe to break etc.).

So with a couple of primitive notions we wrote a 20-line program and then the description of its
behavior took half a page, and it sounded like if the program was a quite intelligent entity (actually
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two entities). (Now, this may seem a vicious and illegal program, but maybe the police may use it
to simulate different scenarios for breaking the bank and thus prevent them?)

However, too much freedom and flexibility may leave the user without the needed support for
disciplined programming. The author clearly recognizes this (the picturesque words he uses to
describe the problem are “As history has also proved sometimes—freedom without limits does not
always lead to Paradise”). Another problem is efficiency, because these general mechanisms are
quite expensive to execute. Both problems can be specialized by taming the model, specializing
and limiting it in certain ways to fit particular user needs.

Although unsuitable in its present shape for industrial use, OBIECT-PROLOG is a most clear
example of the power of relatively simple LP mechanisms to model intelligent behavior.

2.4 POKRS: Prolog-based Object-oriented KR System

POKRS[1] was developed in China in 1988. I have only a very brief description of the system, so I
am including it here only for completeness. There is nothing special about this system (it is quite
similar to ESP), except that when loading a logic program into a local knowledge base, automatic
checks of the integrity of the inheritance hierarchy and checks for redundancy, subsumption and
contradiction among clauses are performed.

The language used in the paper substantially hinders its understanding: a typical example is
(sic) “The knowledge base organization is of taxonomically hierarchical architecture”.

2.5 KSL/Logic: Reflexive and Extensible

KSL/Logaic [10, 9, 8] is a LP extension of the OOP language KSL (which stands for Knowledge
Specification Language), developed in the OWL programming environment of Electronic Data
Systems Corp (EDS/OWL). An explicit goal in the design of KSL has been the possibility to
integrate different paradigms into the language, so KSL/LoGIc may be seen as merely an example
of one such integration. A fundamental means to achieve this paradigm-level extensibility is the
reflexivity of KSL, which means that language constructs are represented as data objects in the
language. So on the one hand, the language can operate on itself, which is most useful for the
implementation of such tools as compilers, debuggers and performance profilers; on the other hand
the language can be extended simply by addind new classes to the class hierarchy which describe
the new language constructs. This reflexivity has been achieved much like in Lisp: by severely
restricting and making uniform the syntax of the language. Everything in KSL (method headers,
variable declarations, statements etc.) is represented by some form of lists. Part of the KSL/Locic
class hierarchy which shows that its language constructs are represented by classes is reproduced
below:

LanguageObject
BehaviorObject
ClassBehavior
ExtMethod
SlotAccess
Method
PredicateBehavior
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ConstantBehavior
VirtualSlotDefault
VariableBehavior
BuiltinPredicateBehavior
TrapObject
ExpressionObject
MessageExpr
VarAssignment
VarReference
ForExpr
WhileExpr
CommentExpr
ConditionalObject
LogicalExpr
RelationalExpr
ExistsExpr
ForAllExpr
PredicateExpr
HornClause
SwitchDomainExpr
CutExpr

The following example which computes the age of a person should give a sense for the flavor of the
language:

(#Method
(&Selector Age)
(&Class Person)
(gParmlList (#List Self))
(&VarList (#List BirthYear BirthMonth))
(§ExprList (#List
(Set BirthYear (Year (BirthDate $Self)))
(Set BirthMonth (Month (BirthDate $Self)))
(When
(#List (GreaterThan $BirthMonth $CurrentMonth)
(Subtract (Subtract $CurrentYear $BirthYear) 1))
(#List True
(Subtract $CurrentYear $BirthYear)
)))

Looks pretty much like Lisp to me. The statements comprising the body of the method are
called ezpressions in KSL, so this is the what ExprList comes from. They have to be explicitly
packaged into a list, which is not quite connvenient. Method sends looks as follows: Selector
(Receiver) and the lack of priority rules demands an excessive amount of parentheses. For me
it is particularly disturbing that the same names have to be prefixed by various different “highly
mnemonic” symbols in different contexts. The same method in SMALLTALK is substantially shorter
and looks much better:
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Person methodsFor: ’age’
age

"computes the person’s age"

| birthYear birthMonth |

birthYear := self birthDate year.

birthMonth := self birthDate month.

birthMonth > currentMonth
ifTrue: [“currentYear-birthYear-1]
ifFalse: [“currentYear-birthYear]

An example of a predicate (computing the ancestor relation) in KSL/Logic is:

(HC (P ancestor %X %Y)
(P parent %X %Z) (P ancestor %Z %Y))

(here P stands for “Predicate” and HC stands for “Horn Clause”). Again, the corresponding ProLoG
code is more appealing:

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

Definitely KSL needs a more user-friendly (actually programmer-friendly) compiler front-end.

The reader should note that the uniformity of KSI is of a quite different nature then the
uniformity of OBIECT-PROLOG: the former is at the syntax and language construct representation
level, while the latter is at the computational model level (because the computational model of
KSL/LogGIc is completely different than the one of KSL).

The needed inference process (unification) is implemented by objects (the initial activation of
a goal returns a search node object which is capable of performing backtracking and providing
the alternative clauses which may unify with the goal). Although this is probably the easiest
way to implement resolution in an OOP language and although the presence of such an explicitly
represented proof tree (as opposed to one dynamically unfolded in time) may have some benefits
for e.g. smarter search strategies, it suffers from inefliciency problems.

The integration of LP and OOP seems good both at the execution level (predicate behaviors
can me freely mixed with procedural and/or functional behaviors) and the data level (predicate
arguments can be not simply logic variables or syntactically constructed terms, but arbitrarily
complex objects.

Despite its poor syntax, KSL /LoaIic solves a problem present in ORIENT84 /K: the confinement
of knowledge to the limits of one object. In KSL/LoaIc there is the notion of a domain object: an
object which embodies the whole application domain. Of course, this object would be very complex
if it was to do the whole work alone, but it is assisted by its subobjects which represent application
subdomains. The predicate behaviors of the global domain object embody the most general and
global relationships in the application domain. This idea seems innovative, however I fail to see
why exactly the same could not be implemented in ORIENT84 /K.

Probably it is curious to note that the two papers [10] and [9] overlap in at least 3/4 of their
content, and the last 1/4 of [9] is included in [8], but the authors do not seem quite concerned
about this: in [9] they refer to [10].
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2.6 AGENTS: Cooperating KBS

AGENTS[7] is an architecture for KBS developed by Huang and Brandon at the University of
Wales, Cardiff. (It is completely different from the Actors paradigm of Hewitt and Agha.) The
initial motivation for its creation was support for intelligent CAD (manufacturing design) systems
(though it can be used for other tasks as well, for example for modeling any decision-making
process which in the real world is cooperative, e.g. doctors on a joint consilium ). In engineering
design there are numerous considerations to be taken into account and correspondingly, numerous
different knowledge sources to be exploited. On the other hand, present day expert systems have
to be focused in relatively narrow domain areas in order to be successful. This raises the issue
of having a number of systems (agents), each of which is specialized in a certain domain area or
aspect and all of them cooperate to solve the overall problem.

As an architecture, AGENTS is very similar to ORIENT84 /K because it also adopts the notion
of agents having local knowledge bases (and these may be even written in different private “proof
languages”), which are packaged like objects and communicate with each other using a common
“argument language” (I suppose that this is to be read “imperative”). It differs from ORIENT84 /K
in the way it is implemented: ORIENT84 /K is based on a SMALLTALK-like object-oriented model,
while AGENTS is implemented by extending ProLoG with OO constructs. The authors justify
their approach by the claim that “Expertise has already been coded and accumulated in PrRoLOG
in many fields of engineering”. My opinion is that the other approach is more appropriate; the
authors point out themselves that there are two ways to see an AGENTS program: either as a set
of agents or as a set of PROLOG clauses which both provide predicate methods and the structuring
of agents (and therefore the order in which these clauses are specified is important even for clauses
with different predicate names):

agent(person) .
sub(student). 7 subclass
attribute(name).
attribute(age).
grandfather(X) :- 7 a rule
X 7- father(Y), ' send query to X
Y 7- father(self).

endagent.

agent(student) .
super(person). ), superclass
attribute(courses).

endagent.

Such overloading of clauses with both structuring and operational tasks seems both unnecessary
and inconvenient. (A feature of AGENTS can be seen in this example: sending a query to the agent
X about its father in the rule for grandfather. Such sending a logical query to another object is
typical of OO LP, but the most often used syntax is X:father(Y).)

Another difference from ORIENT84/K is that in AGENTS object classes (which are called
“agents”, whereas object instances are called “objects” proper) are not implemented in the same
way instances are (unlike SMALLTALK). (And in addition there is some entity named “the meta-
agent” which provides standard builtin predicates for the other agents). While this compromises
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the uniformity of implementation of the system, it may be beneficial for some specific KR pur-
poses, as described below: objects carry only attributes and values, whereas agents in addition to
attributes carry also methods and constraints. (Objects inherit features of agents through an in-
stance inheritance, so they need not have all these features themselves.) Now the authors conjecture
that a trace of such “lightweight” objects, with only partially specified or rawly estimated values,
may serve as a history of the solution development (versions of agents) and facilitate explanation,
solution revision and dead-end avoidance.

Another feature of AGENTS, named by the authors “demons, also called constraints”, is that
predicate methods may have “before”, “after” and “if-failed” subparts, much in the spirit of method
combination in Fravors and CLOS [14, Chapters 10.2.1 and 10.3] (the authors mention that
demons are a more general notion including active values, and say that this method combination is
only an example of what can be done in AGENTS). These auxiliary submethods have the following
syntax:

head :- body. ¥ primary
head =: body. ¥ before
head := body. % after
head -: body. % if-failed

and the following semantics: the current goal is matched against the head of the primary method; if
this succeeds than the “before” submethod is tried and if it unifies, it is executed; then the primary
method is executed; then the “after” submethod is tried and eventually executed. If during this
process the primary or “after” methods fail, then the “if-failed” method is executed. Therefore
a goal fails if there is no clause for it in the current agent, or if the “before” submethod fails, or
if the primary or “after” methods fail and the “if-failed” method also fails.! Some considerations
regarding the inheritance of auxiliary methods and whether variable bindings imposed by their
evaluation should affect the execution of the primary method, are discussed by the authors. Some
of the goals may be marked as “askable” from the user: if the user answers “yes”, s/he is further
asked to supply values (if known) to the yet unbound variables in the goal; if the user answers
“no” then normal PrRoOLOG backtracking takes place (the user may also ask “why”, see explanation
facilities later on).

The communication between agents is accomplished using a blackboard. However the authors
do not justify this design decision neither do they discuss how does this agree with the “message
passing as only way of communication” paradigm of OOP. The blackboard is used to hold the
“global state” of the problem solving process and the beliefs common to all agents. It may serve
(but seemingly this has not been implemented) as a truth-maintenance medium (upon the detection
of a conflict the participating agents are notified and advised as to revise their beliefs), as a task
agenda for tasks yet to be performed, as an “advertising media” to display tasks for which there is no
known agent able to complete them. Another use of the blackboard is to store a structured network
of partial solutions (decisions) and their justifications which may be used in providing explanations
and for intelligent backtracking. Clearly this design decision complicates the initial model: there
is this new entity (in addition to agents) which serves as a quite active communication medium.
Although not “wrong”, this needs some justification. Isn’t it possible to have an appointed agent
serving as a “truth-maintainer” and “facilitator” for the communication of other agents (or even
better, a number of such agents serving a number of small “interest groups”)?

1Of course, these auxiliary methods are optional and may be omitted.
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Now there is something unclear in the paper: on the one hand, the description of the language
(which does not go to much more elaboration than the example given above) renders it quite simple
and not very powerful. On the other hand, authors further describe every agent as a quite complete
KBS with user interface, explanation facilities, knowledge acquisition facilities and so on.? While
such model fits the title of the paper, clearly the language example given earlier is of a much lower
level of granularity. The transition from this relatively low-level language to the complete KBS
architecture is not described in the paper. How did the language facilitate the implementation of
the architecture?

The explanation facilities supposedly included in every agent are not quite sophisticated: “why”
explanations are given by dumping a restatement in English of the PROLOG stack from the current
goal up to the topmost goal; “how” explanations are given by showing a more complete part of the
proof tree, with leaf nodes marked as “fact” or “user input” or “procedurally computed”. Although
of unclear utility, these explanation facilities suggest that it may be necessary to keep parts of the
proof and backtracking histories for this purpose.

The authors claim that the advantage of this system over ORIENT84 /K is that “ORIENT84 /K
has complicated structure and therefore include many features that are difficult to master” [7, page
135]. Probably the authors here mean that it would be easier for a PROLOG programmer to adapt
to AGENTS than to ORIENT84 /K, but the reverse of this is that it would be easier for a SMALLTALK
programmer to adapt to ORIENT84 /K than to AGENTSs, and furthermore the proper use of OOP
requires a revision of one’s programming habits anyway. I see the main benefit of AGENTS in its
explicitly stated goal to support cooperating intelligent agents, and all other features described
above as not so important. Such features are probably even inappropriate for a basic OOP+LP
model for KR because they may be either not needed for a particular application or not sophisticated
enough and thus useless for another one.

A very important idea put forward by the authors is that some KBS applications (for exam-
ple engineering design) need multiview, multiversion, multicontext and multicomponent modeling
facilities. Indeed, the history why a certain design decision has been adopted may be no less im-
portant than the decision itself, because the decision may not be directly reusable in a different
design, while the underlying reasons can be reused with a higher probability.

3 Crassic/KL-ONE: A Different View

The work on KL-ONE started with the thesis of Ronald Brachman at Harvard in 1978 and still
continues. As Brachman points out, since then there have been about 20 systems developed on
the base of KL-ONE (mainly in Europe). Others who participated extensively in the development
of these systems are Levesque and Patel-Schneider. Crassic and KL-ONE [3] expose a very dif-
ferent point of view than the languages described up to now. Their point of view is much more
“KR oriented” than it is language oriented. As Patel-Schneider argues in [17], the Object-Oriented
Programming Systems are exactly this—programming systems—and they are not very good in
knowledge representation. He describes another class of systems—Object-Based Knowledge Rep-
resentation Systems (OBKR)—which try to overcome some of the shortcomings of OOP systems
for KR. The problem with OOP is that they are operationally based (for example described in the
terms of their operation), and not representationally based. The main practical drawback from

?Does every agent in a system need separate nser interface? I doubt so.
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this is that objects in OOP do not have “knowledge” of their own purpose, thus the inheritance
relations between them are to be specified manually. In an OOP system, where there is a hundred
or a thousand of classes, this may not be a problem, but in a complex KR system which accounts
for more subtle individual properties of objects, every object may need to have its own class and
this may make the manual classification of these objects impossible. This objects’ lack of awareness
of their purpose in OOP limits its expressive power for KR because e.g. one cannot define a class
axiomatically (by the set of properties it has), but have to create and attach it in the proper spot in
the class hierarchy by hand. Even further, most OOP systems (excluding e.g. the languages Beta
and Eiffel) allow properties of classes to be overriden down the class hierarchy (mostly because this
is sometimes needed by “implementation inheritance” which purpose is code reuse), compromising
its purpoose as a classification hierarchy.

It has been long ago argued by Hayes, Moore and Frisch that frames (or for that purpose,
objects), have little value for KR (except for their structuriing properties), because they have no
epistemological commitment to their purpose. For example, no distinction has been made between
the definitional slots of frame (which make it to be of a particular class) and other “casual” slots.

So in CLAssIC and KL-ONE one of the most important modes of inference is subsumption: the
automatic calculation of the inclusion relation between two sets of objects (two classes). In a sense,
in OOP systems classes are represented by their extensionals (the set of objects comprising the
class or at least a manually defined structure and behavior suite for the class), while in OBKR
systems classes are defined by their intensionals: the set of properties that comprise the definiton
of the class. Unfortunately, it is very hard to implement OBKR systems correectly and fully
(some inconsistencies in KL-ONE-based systems were not exposed until recently) and some of their
operations are intractable (computationally infeasible), at least in particular settings. As Patel-
Schneider puts it [17] “Developing a usable OBKR system thus consists mostly of inventing a
representational logic with the appropriate expressive and deductive power”. An example of such a
development is the use of a four-valued logic (with values true, false, unknown and contradictory),
which localise some phenomena (e.g. a contradiction) so that they don’t have to be propagated
through the whole network of propositions.

Crassic and KL-ONE have concepts instead of classes, with roles instead of attributes, a role
tazonomy instead of inheritance hierarchy, and structural descriptions which give an explication of
the role of a concept in a particular relationship based on its connections to other concepts.

Crassic is based on Lisp (“host” below refers to this implementation language) and as a
language is very simple, its almost complete syntax is given below:

<concept> ::= THING | CLASSIC-THINF | HOST-THING | <concept name> |
(AND <concept>+) |
(ALL <role> <concept>) |
(AT-LEAST <number> <roled>) |
(AT-MOST <number> <roled>) |
(FILLS <role> <individual name>) |
(SAME-AS <attribute> <attribute>) |
(TEST-C <function> <argument>*) |
(TEST-H <function> <argument>*) |
(ONE-OF <individual name>+) |
(MIN <number>) | (MAX <number>)
<individual name> := <symbol> | <string> | <number> |
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‘<host-language expression>

The advantage of such seemingly restricted language is that it has a clean compositional semantics
which is required for the subsumption algorithm to be feasible.

Although very different from the systems described in the previous section, CLASSIC and KL-ONE
share with them two important features: the object-orientation for knowledge domain steructur-
ization and the employment of logic (which in the previous systems is more LP) for computation.

4 Advanced Special-Purpose Logics

There is an abundance of non-classic logics for different aspects of the material world, developed
by researchers in mathematics and philosophy, which wait for their application to KBS. These
include Temporal Logic to represent time, different common-sense Physics Logics to reason about
the physical properties of the world (some of these are not yet well formalised), Fuzzy Logic to
deal with uncertainty, Epistemic Logic to reason about beliefs of intelligent agents, Autoepistemic
Logic to reason about agents’ beliefs about their own beliefs, Deontic Logic to capture the notions
of permission, prohibition and obligation, Modal Logic about different possible developments of the
state of affairs, Dynamic Logic to capture state change, etc. etc.

Some of these logics are plagued by paradoxes and inconsistencies, for some there are no compu-
tationally feasible models yet, some are not fully formalised, some will be very difficult to integrate
but nevertheless I believe that they provide a very valuable layer of abstractions which should be
used in KR tasks. Logic Programming is not only PROLOG, it encompasses all attempts to implant
formal logic theories into computing.

Although beyond the scope of this paper, I deemed these ideas significant enough to deserve a
separate section.

5 Summary and Discussion

The paper surveys a number of OOP+LP languages for KR and contrasts them to the CrLASSIC
approach. However my goal was not to determine which of the two is “the right” way to support a
KR system, just to argue that LP augmented with the structuring features of OOP (or, conversely,
OOP made more intelligent by the inference abilities of LP), is an appropriate way.

Another very important feature which is needed for knowledge bases is object persistence (one
cannot have a knowledge base without first having a database). A lot of research in Deductive
Databases has been performed by the LP community; Object-Oriented Databases have gone even
further in the industrial aspect, but there seems to be a lag in their theoretical development
(developments regarding the foundations of object updates and changing state have been undergone
only recently). The first two conferences in the integrated area of Deductive and Object-Oriented
Databases were held in 1989 and 1991. However this topic is out of the scope of the current paper.

So, as I see it, the ideal (at present) symbol-level basis for Knowledge Representation would
be a Deductive Object-Oriented Database with versatile programming language, stable and well-
founded formal semantics and non-classic logics (temporal, spatial, deontic etc.) for special-purpose
modeling, extensibility for inclusion of other paradigms (without compromising the semantics), and
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possibilities for distributed computing. In my opinion, we are about five years from the time when
something like this will be commercially available, and probably 15 years more until it is widely
adopted in industry.
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