
TR93-18�Applications of Linear Logic to Computation:An OverviewVladimir Alexievy <vladimir@cs.ualberta.ca>Department of Computing Science, 615 GSBUniversity of AlbertaEdmonton, Alberta T6G 2H1CanadaDecember 1993zAbstractThis paper is an overview of existing applications of Linear Logic (LL) to issues of computation.After a substantial introduction to LL, it discusses the implications of LL to functional programming,logic programming, concurrent and object-oriented programming and some other applications of LL, likesemantics of negation in LP, non-monotonic issues in AI planning, etc. Although the overview coverspretty much the state-of-the-art in this area, by necessity many of the works are only mentioned andreferenced, but not discussed in any considerable detail. The paper does not presuppose any previousexposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination)than to logicians. The paper contains over 140 references, of which some 80 are about applications ofLL.1 Linear LogicLinear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized asrelevant to issues of computation (especially concurrency and state change), an evidence of which is thatthe paper appeared not in a journal of logic, but in Theoretical Computer Science. Also, it was recognizedas a novel and important contribution: it was allotted a whole issue of the journal (about 100 pages) andwas published with the following caveat \We warn the reader that because of the length and novelty of thispaper, it was not passed through the normal review process".The paper is organized as follows: this section provides an introduction to LL (no previous exposure toLL is needed). For other short introductions to LL, including intuitive motivations and full presentationof the sequent system, see e.g. [109, 148, 154]. A very complete yet brief reference of LL theory is [136].Unfortunately it is in Japanese, but one can still read the formulas. No references are included.Subsequent sections discuss in turn applications of LL in various areas of computing: functional pro-gramming, logic programming, concurrent and object-oriented programming, deductive planning.A comprehensive (although somewhat out of date) coverage of both proof theory and semantics of LL isprovided in the book by Anne Troelstra [151] (well-written and easy to read; above all the only book on LL todate), and a good book on proof-theoretical issues and their computational interpretation is Proofs and Types[73]. A WWW page about LL is maintained by Lincoln, http://www.csl.sri.com/linear/sri-csl-ll.html.�Available from ftp.cs.ualberta.ca: pub/TechReports/TR93-18, �le TR93-18.ps.gz or TR93-18.ps.Z. Also in Bulletin ofthe IGPL 2(1), March 1994. Comments are most welcome.zLast revision September 1994 1

1.1 Formulas as ResourcesClassical Logic (CL) is not well suited for reasoning about a dynamic world, because it was not designed forsuch a task. The methodological setting of CL is \Platonic": there is an external (ideal or real) static world,and logical formulas try to describe and mirror it. Formulas are interpreted as eternal truth values which,once established, last forever and can be used again and again in derivations of other formulas. This is theultimate source of a number of problems with the application of CL in areas which need the notion of stateor non-monotonicity. Girard refers very critically to the existing approaches, using expressions like:The continuing shame referred to as The Frame Problem: : : [65]: : :Reiter's Default Logic, better called \De�cient Logic", because it has been long known thatprocedures based on the impossibility to prove a formula cannot possibly be e�cient. [65]The consideration [in non-monotonic logics] of weird classical models de�nitely cuts the bridgewith formal systems but also with informal reasoning. [70]Although clearly outspoken, these claims are not without a justi�cation. The two main problems with mostextensions of CL are� The addition of \non-logical" inference rules usually spoils the proof theory of the formalism. Tothe contrary, LL has a clean proof theory which actually serves as the basis of its applications tocomputation.� Since these formalisms simply extend CL, without addressing the problem of the staticity of CL,they end up reasoning about successive changed states of whole theories, which usually makes themcomputationally infeasible. So the best they can serve is as descriptive formalisms, rather then actuallyprogrammable approaches.In LL formulas are treated as resources which are produced and consumed. Every formula should beused exactly once in a derivation: neither duplication (reuse) nor discarding formulas is permitted. As PhilWadler describes it vividly,LL is a logic for the 90s. If you lean to the right, view it as a logic of realistic accounting: no morefree assumptions. If you lean to the left, view it as an eco-logic: resources must be conserved.[154]The technical means by which this is achieved is that two of the \structural" rules of CL�; '; ' ` ��; ' ` � Contraction � ` ��; ' ` � Weakeningare abolished (thus sometimes LL is referred to as a \substructural logic"). Under a bottom-up reading(corresponding to goal-directed proof search), these rules correspond to duplication and discarding of for-mulas respectively. While in CL sequents are composed of \expandable" sets of formulas (meaning that anyformula can be added and that duplicates are merged), in LL sequents are composed of multisets of formulas,i.e. the number of occurrences does matter. Since the third structural rule�1; '; ;�2 ` ��1; ; ';�2 ` � Exchangeis retained, the order of formulas does not matter. However there exists Non-Commutative LL [5, 4, 155] (stillrather young) which also abolishes Exchange and in which sequents are composed of sequences of formulas.Even more exotic varieties exist, e.g. Cyclic LL (with applications to Quantum Mechanics) [155], in whichonly cyclic rotations of the formulas are allowed.LL is a re�nement of CL which revises the very foundation of the logic. This is appealing comparedto most existing approaches which extend CL with additional constructs (multiple worlds, additional non-logical inference rules, etc), because is seems less probable to adapt an unsuitable formalism by extension2

than by revision. However the seemingly simple revisions which LL introduces (abolition of the structuralrules) lead to radical changes of the logic, which make it more complex and which are described below.It should not be unexpected that conjunction and disjunction cease to be idempotent (indeed idempo-tence is incompatible with our goal to regard formulas as resources). Further, LL introduces two kindsof connectives, multiplicative and additive, none of which is quite the same as the classical connectives (al-though additives are idempotent). (The names come from a semantic theory of LL (coherence spaces), wheremultiplicatives are modeled by the Cartesian product of the two operands, while additives are modeled bythe direct sum (disjoint union).) The connectives are shown below, together with their names and neutral(identity) elements (e.g. '
 1 = '). multiplicative additive exponentialconjunction
 times, 1 & with, > ! ofCoursedisjunction } par, ? � plus, 0 ? whyNotimplication �� lollipopNotes:1. The symbol } above is supposed to look like an upside-down ampersand.2. Exponentials are explained below.3. LL has also quanti�ers 8 and 9, which are pretty much the same as in CL.4. In my opinion, it is unfortunate that Girard has chosen the above notation, because one would expect thatdual connectives will have similar symbols, which is not the case (his reasons were that
 distributes over �,which gives the nicely looking (' �)
 � = ('
 �) � (
 �)). Troelstra in [151] proposes the alternativenotation multiplicative additiveconjunction ?; 1 u;>disjunction +; 0 t;?which however hasn't enjoyed wide popularity.The distinction multiplicative/additive stems from the fact that when sequents are multisets, inferencerules can involve sharing of contexts (the passive formulas in the rule) in various degrees (in CL, Weakeningand Contraction do not leave the possibility for such distinctions). LL considers two modes of sharing:� No sharing at all: contexts are completely separate and are concatenated in the conclusion. Thiscorresponds to multiplicatives, which in [73, Appendix B] are also called \cumulative" connectives.Relevantists call similar connectives \intensional", and Avron in [26] calls them \internal" becausethey correspond to the commas inside a sequent.�1 ` ';�1 �2 ` ;�2�1;�2 ` '
 ;�1;�2
 R �1; ' ` �1 �2; ` �2�1;�2; ' } ` �1;�2 } L� Complete sharing: contexts are required to be the same. This corresponds to additives, which are alsocalled \identifying", \extensional" or \combining" connectives.� ` ';� � ` ;�� ` ' & ;� & R �; ' ` � �; ` ��; ' � ` � � LPlease note that in CL the above multiplicative/additive rules are equivalent (derivable from one another)because sequents are \expandable" sets. 3

The comma (multiset union) in sequents is multiplicative and is interpreted as conjunction on the left andas disjunction on the right. Linear implication is the internalisation of entailment in the sequent calculus,thus � ` � i� (
 �) �� (} �). In terms of inference rules,�; '; ` ��; '
 ` �
 L � ` '; ;�� ` ' } ;� } RTo complete the collection, there are a couple more rules for the additives:�; ' ` ��; ' & ` � & L1 �; ` ��; ' & ` � & L2 � ` ';�� ` ' � ;� � R1 � ` ;�� ` ' � ;� � R2The intuitive meaning of the connectives introduced so far is: '
 means to have both data ' and ;' & means to have a choice between ' and (observe in & L1 and & L2 that if we can prove �; ' ` � or�; ` �, we can pick the corresponding rule and prove �; ' & ` �); ' � means we have one of ' and , but the choice is external (in � L, we have to ensure we can prove both �; ' ` � and �; ` � becausethe choice is not ours); ' �� means that the datum ' is consumed (used exactly once) to produce thedatum .1.2 NegationLinear negation is denoted (�)?. It is introduced syntactically , starting from a set of propositional lettersfp; q; : : :g and their negations fp?; q?; : : :g and de�ning negations of complex formulas by DeMorgan's dual-ities, ('
)? = '? } ? etc. As usual, implication can be de�ned through negation and (multiplicative)disjunction, ' �� = '? } , and regarded as shortcut notation.Unlike Negation As Failure in logic programming, linear negation is involutive ('?? = ').1 Yet unlikeclassical negation, linear negation is constructive. This is possible because linear negation does not imposean isomorphism on a semantic structure for LL (while double negation is certainly an isomorphism). In theusual models of CL, Boolean lattices, negation corresponds to turning the lattice upside down and imposesan isomorphism.Because of the involutiveness of negation, sometimes LL is presented in a one-sided (usually right-sided)sequent calculus, transforming � ` � to ` �?;�. This approach reduces in half the number of rules needed.1.3 ExponentialsLL does not abolish Weakening and Contraction altogether, because this would render the logic too weak.Instead, their use is reintroduced in a \controlled environment" by explicitly marking the formulas for whichWeakening and Contraction are applicable. Two unary connectives are introduced, ofCourse ! and whyNot ?.They are called exponential connectives, modalities, or storage operators and are dual to each other. ! isused for assumptions (antecedents in a sequent; resources) and ? is used for conclusions (succedents; results).The inference rules for ! are�; !'; !' ` ��; !' ` � Contraction � ` ��; !' ` � Weakening�; ' ` ��; !' ` � Dereliction !� ` '; ?�!� `!'; ?� Promotion(!� and ?� in Promotion mean that every formula in � and � is exponential.)Linear (non-exponential) formulas are similar to tokens in a data
ow machine or signals over an electricwire: they are created and immediately consumed. An exponential formula corresponds to a datum storedin memory. With this interpretation (and with a bottom-up reading), the �rst three rules above can be1de Paiva considers non-involutive negation in [51, 52]. 4

thought of as the actions of duplication, discarding and reading respectively. Promotion corresponds tostoring a datum which is produced only from stored data (the ? before � play the rôle of ! for formulas onthe right side, which is justi�ed by the duality of ? and !). It can be proved that!' = 1 & ' & (!'
!')so indeed the three things one can do with a stored datum are to discard it (1), to use (read) it (') or toduplicate it (!'
!'), and the choice is ours.21.4 Proof TheoryIn CL the process of deduction is only a means to establishing truth and has no importance by itself. There-fore proofs are not regarded as \�rst-class citizens". This has adverse consequences for the computationalinterpretations of CL, both for automatic proof search and for its use as a programming language. SoCL is not very constructive. A number of approaches to make CL more constructive exist, based on bothphilosophical and computational grounds.� An easy way to make CL more tractable is to consider a limited fragment of it. The most importantexample of this are Horn clauses and resolution. However this reduces the expressive power of logic,which may be unacceptable for certain applications. Attempts to restore the expressive power aredisjunctive logic programs, programs with negation, etc.� The traditional approach stemming from the desire to make mathematics more constructive is in-tuitionism. In this approach, proofs are considered as e�ective functions from the assumptions tothe conclusion. This approach has important applications in Functional Programming through theCurry-Howard isomorphism (see Section 2). There exists Intuitionistic LL in which only one formulais allowed in the right-hand side of a sequent.� A number of other substructural logics have been studied, for example a�ne (direct) logic (no Contrac-tion), relevance (pertinent) logic (no Weakening) BCK logic, etc. (for references see e.g. [58]). Relevancelogic has stemmed from the desire to exclude vacuous uses of implication (e.g. \If � is 3 then I am atzar" is a true, but vacuous sentence). Since discarding of assumptions is not allowed, only relevantentailments are provable.LL has a rich and very well-developed proof theory. Furthermore, its proof theory is applied directlyfor obtaining computational interpretations of the logic, unlike the case with CL, where the proof theory islargely \external" to the logic. One problem with proof search in general is that not only there are verymany ways of proving the same proposition, but also that many of these proofs di�er only in inessentialdetails, like the exact order of rule applications. Technically speaking, proofs possess rich symmetries andpermutabilities. These permutabilities need to be discovered and exploited, because otherwise the searchspace gets unmanageably large and a program may spend years generating variants which are essentiallythe same. Girard speaks of \the bureaucracy of taxonomy", having in mind that all these di�erent ways ofsaying the same thing, if not taken care of, can get over and render a logic programming system unusable.A number of features of LL have positive implications to the proof search process. One is that its richersuite of connectives conveys better the intended usage of formulas. To a certain extent, the proof is encodeddirectly in the formula to be proved. Andreoli and Pareschi [12, p.27 �] speak of \syntax-directed proofsearch".2As pointed out to me byMart��-Oliet, more precisely the equality symbol above should be replaced by ��� (linear implicationin both directions). He says \there is no notion of equality in LL. It is true that a double linear implication can be proved,but double implication is not the same as equality. : : :As I think Girard himself says in one of his papers, the rules for themodalities do not determine them completely." 5

Another is that LL possesses the very desirable Cut Elimination property. The deduction rule Cut (notto be confused with Prolog's !) is formulated in either of the following two forms�1 ` �1; ' ';�2 ` �2�1;�2 ` �1;�2 Cut (or �1 ` �1; ' �2 ` �2; '?�1;�2 ` �1;�2)Cut elimination states that any proof using Cut can be transformed to one which does not use it (so Cutneed not be present in the logic, but can be adopted as a derived rule). (Note: this holds only if there are noadditional non-logical axioms. In the presence of non-logical (proper) axiom, e.g. the predicate de�nitionsin a logic program, an analogous property states that Cut can be pushed all the way up to the leaves of theproof tree where one of its premises is a proper axiom.) Cut elimination for LL has been proved by Girard[62, 73] by largely the same method as Gentzen's Hauptsatz which proves it for CL.Cut elimination is important both for reducing the space of proofs (only cut-free proofs will be searchedfor, see Section 3), and because the process of cut elimination (proof normalization) can be regarded ascomputation in a term rewriting system (Section 2). Logics which do not possess this property (not tomention systems contaminated with non-logical inference rules, in which it may be even impossible toformulate it) forfeit these possibilities.Closely related is the Subformula property which says that if a formula is provable, there exists a prooffor it in which all formula occurrence are subformulas of the conclusion (and the assumptions, if any). It isobviously useful for proof search, because it limits the set of formulas to be tried.A construction which largely avoids the \bureaucracy of taxonomy" are Proof Nets (for some of thedevelopments see [62, 30, 28, 49, 77, 18, 35], for a generalization see [100]). Proof nets were invented byGirard for LL, but they are not that peculiar to LL and can hopefully be adapted for other logics as well.A proof net is a graph with nodes marked by formulas (not sequents) and edges linking the premises ofa rule occurrence to the conclusion. These links are directed, which is usually represented by placing theconclusion below the premises. All nodes without outgoing (downward) edges are the conclusions of the net,so a derivation can have more than one conclusion (of course, they can be gathered together by }). Thereare also axiom links connecting p and p?, corresponding to axiom sequents ` p; p?, which are not directed.Some of the order (sequentiality) in the presentation of a proof is unavoidable; for example two introduc-tion rules enlarging the same formula come necessarily in a particular order. But conventional proof treesintroduce in addition lots of inessential sequentiality (though not that much as a linear presentation of theproof would do), because two introductions in the same branch of the tree have to be assigned a certainorder, no matter whether they operate on the same formula or not (in other words, whether the order isessential or not). This is not the case with proof nets, because multiple conclusions are allowed and becausedual propositions in an axiom need not be stuck together in the same node (sequent), but only need tobe connected by an axiom link, which itself is undirected. Girard says \Proof nets are well-developed andwork perfectly for the multiplicative fragment; work for full LL is underway." Some developments for thequanti�ers are in [64, 69].Proof-theoretic considerations have inspired Girard to formulate a programme called Geometry of Inter-action [65, 66, 67, 3]. Brie
y stated, it is the desire to obtain a good formalization of concurrency, analogouslyto what �-calculus has achieved for sequential computation. The introduction of unnecessary sequentializa-tion should be avoided when possible. Girard was not perfectly happy with denotational semantics, becauseit describes the behavior of �nite programs by in�nite static structures. Geometry of interaction tries tocapture this behavior using �nite dynamic structures. Girard compares denotational semantics to the partof mechanics called Statics, and desires what would be the Dynamics of computation.Proof-theoretical results for LL and other resource logics can be found in Dirk Roorda's thesis [145].1.5 Complexity of LLFortunately, we have a quite good understanding of the computational complexity of various fragments ofLL, mainly due to Patrick Lincoln [108] and Max Kanovich. Unfortunately, this complexity is rather high.6

� Propositional (quanti�er-free) LL is undecidable, unlike Propositional CL. This is mainly due to theexponentials and is proven by encoding the behavior of certain simple counting machines [112, 113].� Multiplicative-exponential LL (no additives and quanti�ers) is EXPSPACE-hard, which follows froman encoding of Petri nets in that fragment [120, 122] (see Section 4.1).� First order multiplicative-additive LL (no exponentials) is NEXPTIME-hard [114].� Multiplicative-additive LL (no exponentials and quanti�ers) is PSPACE-complete [112, 113].� Multiplicative LL and Horn LL are NP-complete, which is proven by reduction to the 3-Partitionproblem [91, 92].� Even severely limited parts of the fragments mentioned in the preceding item still remain NP-complete[115]. \Severely limited" means constant-only (no propositional letters at all, but the multiplica-tive/additive neutral elements are part of the language) or constant free, with only two or threepredicate letters.After seeing these complexity results, one inevitably asks oneself \So what can be the practical use ofLL? Yet another fancy theoretical development." The following considerations are bene�cial for LL in thisrespect:� Usually the other name of \too complex" is \very expressive". Thus if we need an expressive logic (e.g.a logic for software speci�cation, CASE or high-level modeling), we may be willing to accept the highcomplexity.� Much of the (undecidable) complexity of LL comes from the introduction of the exponentials in orderto regain the full power of CL. But \the gist" of LL, namely the concept that formulas are resources, isalready present in the exponential-free fragment. For some applications this fragment can be su�cient,e.g. interconnection speci�cations for concurrent processes based on proof nets. Even more restrictedsystems |without negation| can be of practical interest, e.g. Lambek Calculus [104] for NaturalLanguage processing and Action Logic [138] as a model of concurrency.� The complexity results of the previous subsection do not account for di�erences which are practicallyimportant (but which do not amount simply to a di�erent suite of connectives). For example, Intu-itionistic LL has the same complexity as full LL, yet ILL corresponds to a perfectly feasible re�nementof the �-calculus. This fragment is used as a FP language (Section 2), proofs correspond to functionalprograms, and computation (evaluation) corresponds to proof reduction (as opposed to proof search).Thus undecidability (the impossibility of �nding proofs) does not matter. On the other hand, whenLL is used for LP (Section 3), various restrictions are placed both on the set of allowed formulas andon the space of proofs to be searched, in order to make the search more tractable.� A remarkable work of Girard, Scedrov and Scott [74] provides a logical formalization of the class offunctions computable in polynomial time using Bounded LL, where exponentials are indexed by naturalnumbers !n and ?n and can be duplicated only the speci�ed number of times. The characteristicequation of ofCourse becomes !n' = &ni=0 'i; 'i = '
 � � �
 '| {z }i times :1.6 Semantics of LLIf you think by now that LL is way too complex compared to CL, you will not get any happier when you hearabout semantics. The complexity result about constant-only propositional multiplicative LL [115] mentionedin the last subsection means that no truth-table interpretation of LL is possible (unless P=NP). Also, no7

simpleminded Tarski-style interpretation of the
avor \M j= ' ^ i� M j= ' and M j= " is known forfull LL. This is connected to the fact that linear negation does not impose an isomorphism on the semanticstructure.A notable exception to the above statement is the semantics proposed by Miller and Hodas [85] for theirLP language based on LL (see Section 3). However, the semantics there is conceived for the pragmaticpurpose of providing a canonical (intended) model for the language and it is not completely general, becauseit lacks negation (although soundness and completeness theorems for the corresponding fragment are proved).The semantics consists of a set of Kripke interpretations Kr (all de�ned on the same frame of worlds hW;�i)where r 2 R and hR;+; 0i is a commutative monoid of \resources", corresponding to the multiset treatment ofresources in LL. K0 is intended to be the intuitionistic interpretation (no resources at all). The two semanticclauses below clearly show the Tarskian style of the interpretation and the distinction additive/multiplicative.Satisfaction of a formula under an interpretation Kr in a possible world w is de�ned inductively:� Kr; w j= ' & i� Kr ; w j= ' and Kr; w j= .� Kr; w j= '
 i� Kr1; w j= ' and Kr2; w j= for some resources r1; r2 2 R such that r1 + r2 = r.The accessibility relation between worlds is intended to cater for the interpretation of linear implication, andin order for this to be possible, it is required to be a partial order. Also, all Kr are required to be monotonicon worlds for atomic formulas, that is w � w0 implies Kr(w) � Kr(w0) (in fact w � w0 and Kr; w j= 'implies Kr ; w0 j= ' for any formula '). Then the clause for �� is� Kr; w j= ' �� i� Kr0 ; w0 j= ' implies Kr+r0 ; w0 j= for every r0 2 R and w0 � w.A similar notion appears in an interesting paper by Chau [44] de�ning a modal and substructural (viz. cate-nation) logic in terms of Gabbay's Labelled Deductive Systems. This semantics has at least the advantagethat it is maybe the simplest one proposed for LL.In his initial paper [62] Girard introduced two semantic frameworks. One is the phase space semantics. Ithas an algebraic origin, the domains of interpretation being algebraic structures, later called Girard structures[59]. They are commutative monoids P with a distinguished subset called the set of \antiphases" ?. Fora set X � P , its dual is de�ned as X? = fy j 8x 2 X: xy 2 ?g. Then (�)?? is monotone, in
ationary(X � X??) and idempotent, i.e. a closure operation. The closed sets (ones with X = X??) are called\facts" and they are the entities which interpret LL formulas. It can be proved that the facts consideredunder set inclusion form a complete lattice and the monoid operation commutes with the lattice operations.The lattice's � relation is used to interpret provability; theorems are characterized by 1 � '. Tensor isinterpreted as X
 Y = (XY)?? and so on.The other one is the coherence space semantics. First we de�ne \webs" as undirected graphs (setsequipped with a re
exive symmetric relation _̂ called \coherence"). Coherence spaces are cliques of theweb (subsets where every pair of elements is coherent), regarded as complete partial orders under set inclusion.Every coherence space interprets one formula. Given two spaces A and B, a multiplicative combinationA
 B, A } B or A �� B is interpreted by taking the Cartesian product of the two corresponding webs (thatis, jA
 Bj = jA } Bj = jA �� Bj = jAj � jBj) and stipulating certain (intuitive) conditions on coherence(e.g. for
, (a1; b1) _̂ (a2; b2) is de�ned as a1 _̂ a2 and b1 _̂ b2). Additive combinations are interpretedby taking the disjoint union of the corresponding webs (jA & Bj = jA � Bj = jAj + jBj = f(0; a) j a 2jAjg [f(1; b) j b 2 jBjg), again with certain coherence conditions. Exponential is interpreted by the set ofall �nite coherent subsets of the operand jA!j = }(jAj). Negation does not play such important rôle here asin the phase semantics.An important class of semantics are categorial semantics. They remove the unnecessary concretenesspresent in the other semantics and make a connection to a rich body of results existing in category theory.For example, the ?-autonomous categories which Seely has used as models of LL [150, 27] were studiedby Barr, \in a truly categorial spirit", as early as 1975. Categorial notions (like adjoints, monads, Kleisli8

categories) give useful insights for the design of logics and interpretations, as well as programming languagesand abstract machines. Another semantics in this class are dePaiva's Dialectica categories [51, 52].A recent new development which has important applications to models of concurrency based on LL arethe game semantics [34, 103, 2]. A LL proof is interpreted as a history-independent winning strategy in atwo-opponent zero-sum game.Something which has been long missing for LL is the Kripke-style semantics developed by Allwein andDunn [8, 7]. It is fairly general in that it starts from non-commutative (and even non-associative) operatorsand then commutative LL can be obtained by imposing additional conditions.2 LL and Functional ProgrammingProbably the most developed area of applications of LL is functional programming. A fundamental idea hereis the Curry-Howard interpretation (also variously called \isomorphism", or the formulas-as-types paradigm)[89]. It states that there is a correspondence between the proofs of an intuitionistic logic system andcomputations in a functional programming language. This has its basis in the early approach of intuitioniststhat a proof should be an e�ective function which given the assumptions, produces the conclusions. Thus,the proof of a conjunction is a pair of the proofs of the conjuncts, the proof of a disjunction is a similar pairplus a selection function which says for each concrete pair of disjuncts which proof to pursue, the proof ofan implication is a function which transforms any proof of the antecedent to a proof for the consequent, etc.The term \formulas-as-types" comes from the following idea. (It is easier to understand it for a systemwith introduction and elimination rules, i.e. natural deduction.) We can take the inference rules of a logicand \adorn" them with terms (this is also called term assignment):� ` s : ' � ` t : � ` hs; ti : ' ^ ^I � ` u : ' ^ � ` �1(u) : ' ^E1 � ` u : ' ^ � ` �2(u) : ^E2�; x : ' ` t : � ` �x:t : '! ! I � ` s : '! � ` t : '� ` st : ! E� ` s : ' x : ';� ` t : �;� ` t[s=x] : Cut(where hs; ti is the pair of s and t, �1(u) is the left projection of u, �x:t is abstraction and st is applica-tion). Thus formulas play the rôle of types, and the proof system plays the rôle of a type inference calculus(for typed �-calculus with products and sums). Introduction rules correspond to constructors, eliminationrules correspond to destructors, Cut corresponds to substitution. When an elimination rule appears imme-diately below a corresponding introduction rule, we have a redex which can be rewritten to its reduct, thuseliminating the useless \detour" in the proof:�1...�; x : ' ` s : � ` �x:s : '! ! I �2...� ` t : �;� ` (�x:s)t : ! E) �2...� ` t : �1...�; x : ' ` s : �;� ` s[t=x] : CutThis particular example is, of course, �-reduction.The same idea can be restated in a Gentzen-style sequent system (with left and right rules), but we willhave to restrict ourselves to intuitionistic systems (only one formula on the right side), due to the asymmetriccharacter of functions|many inputs, but only one output. Also, the rôle of Cut becomes more important,because it is the only mechanism which allows formulas from the left and the right sides to interact. An9

example involving conjunction is shown below:�1...� ` s : ' �2...� ` t : � ` hs; ti : ' ^ ^R �3...�; x : ' ` u : ��; z : ' ^ ` u[�1(z)=x] : � ^L�;� ` u[�1(z)=x][hs; ti=z] : � Cut) �1...� ` s : ' �3...�; x : ' ` u : ��;� ` u[s=x] : � CutAlthough this is called Cut elimination, the cut does not disappear immediately, rather it is pushed up theproof tree and disappears only at its leaves (identity axioms ' ` '). The process of cut elimination (proofnormalization) corresponds exactly to computation in a term rewriting system. Thus we have a computationas proof reduction paradigm. For some generalizations of the Curry-Howard interpretation based on Gab-bay's Labelled Deductive Systems (which themselves are generalization of term assignment), see [58].Everything mentioned up to this point was about CL. When LL comes into play, it renders a re�nement ofthe �-calculus in which the programmer has �ner control on evaluation order (lazy vs eager evaluation) andmemory allocation (multithreaded data which demands garbage collection vs single threaded data whichdoes not). Usually about 90% of the data created at runtime is referenced from only one place and isconsumed right away (generation-based scavenging is based on this fact). Thus it is pro�table to managethis data in a \short-term" memory and release it right after its use, avoiding the need for garbage collection.Long-term data can be stored explicitly using the exponential !. In LL the manipulations of stored dataare given explicitly through the rules of Promotion (storing), Dereliction (reading), Contraction (duplication)and Weakening (discarding). All these uses can be either speci�ed explicitly by the programmer, giving thecompiler richer information for storage management, or inferred by a smart type-inference mechanism, thususing linear �-calculus as a lower-level intermediate code.Some early work in this direction has been done by Girard and Lafont [72] and Holmstr�om [88]. La-font introduced a Linear Abstract Machine [99] which implements a functional language without the use ofgarbage collection (but with much copying of terms). An important work is the one by Abramsky [1]. Hedescribes a linear machine more faithful in spirit to the SECD machine of Landin. Wadler has also done workin this area, introducing the distinction between linear short-term memory and non-linear garbage collectedmemory [152, 153]. Other works are [31, 111]. Actually implemented linear functional languages are LinearML (Chirimar, Gunter and Riecke [45, 46]), Lilac (Mackie [117]) and an implementation of Lisp [90].Work in a rather di�erent vein has been done on optimal lambda reduction. An optimal evaluator shouldutilize all the term sharing present in the lambda expression to be reduced, avoiding structure copying andthus avoiding work duplication. The performance criteria proposed �fteen years ago by L�evy remainedunachieved for a long time, until recently Lamping [105] and Kathail [93] independently developed optimalreduction algorithms. However their solution is rather involved, and later Gonthier, Abadi and L�evy [76, 77]greatly simpli�ed it by \reengineering" it in terms of LL proof nets. What is more important, this gavea better logical foundation to the algorithm, which proved very useful for generalizing it to richer typed�-calculus with inductive types, performed by Asperti and Laneve [19, 22, 23, 24, 106]. Their interactionsystems can be considered a generalization of Lafont's interaction nets [100] on the other hand, one whichremoves the requirement for linearity and allows sharing of terms. For further joint developments with Danosand Regnier, see [50, 25, 20]. 10

3 LL and Logic ProgrammingThe paradigm computation as proof search plays for generalized forms of logic programming a rôle, similar tothe one which the paradigm \computation as proof reduction" plays for functional programming (describedin the previous section). In order to obtain a feasible system, it is important to restrict attention to onlya certain type of proofs which are easier to construct than general proofs and then to identify a sensiblefragment of the logic for which this restricted type of proofs is complete. The Cut rule is infeasible from acomputational viewpoint (under a bottom-up reading), because its premises contain a formula which doesnot appear in its conclusion. Presented with the conclusion, the search procedure will have to make a\wild guess" at this point to pick a formula (Cut compromises the subformula property). Therefore, it ishighly desirable for a logical system to have the cut elimination property, which justi�es that Cut can bepushed all the way up to the leaves of the proof tree. There one �nds either logical axioms ' ` ' at whichCut disappears, or non-logical axioms which correspond to program clauses and which can be handled bywell-known indexing techniques.An abstract foundation for generalized LP has been laid down by Miller et al. [133]. They de�ne anabstract LP language as a set of formulas which can appear as program clauses and a set of allowed goals(queries), such that it is possible to perform goal-directed proof search (from the goal up). For this fragment,a restricted kind of proofs called uniform proofs should be complete (i.e. if a goal has a general proof, it hasto have a uniform proof as well). In an intuitionistic setting, uniform proofs are de�ned as ones in whichevery occurrence of a non-atomic formula on the right side is the immediate result of a right-introductionrule. In other words, the search procedure reduces every compound goal to its parts and tries Cut (looks inthe program) only when the goal is atomic. The authors instantiate these general ideas by introducing LPwith hereditary Harrop formulas, the main innovation of which is that implication is allowed in goals. Toprove an implication ' ! from a context �, the context is enriched with the antecedent and then istried in this new context �; '. If contexts are taken to correspond to programs, this opens the possibility toformalize modular LP. Another possibility is to view the formulas in a context as the data �elds of an objectand obtain OO LP. However in the CL setting contexts always grow during the course of a computation(by making additional assumptions), and can shrink only upon backtracking. That is, something can beretracted from a context (or changed) only when the process which has created it terminates and thus cannotmake use of the change. Building on this work, Hodas and Miller investigate LP in a linear setting [85].Since LL allows for more re�ned control over contexts (multiplicity of formulas matters) and can model notonly production of data but also consumption, this opens numerous possibilities for applications such asobject-oriented programming, databases, natural language parsing etc.Cut elimination is not the only property which should be investigated for a logic system and exploited forits \computerization". Another important features are the permutabilities (ways of commuting occurrencesof inference rules) which the logic may have. These permutabilities render many proofs equivalent and it ispro�table to select only one \canonic" proof for every equivalence class and restrict the search to only thesecanonical proofs. Since ! and
 do not commute over all right rules, Hodas and Miller consider a fragmentwhich does not contain them (some of these restrictions are lifted in the work of Harland and Pym [81, 82]which instead of uniform proofs consider LR proofs). The functionality of ! is regained by consideringcontexts (left-hand sides) consisting of two parts: intuitionistic (unbounded resources or methods in an OOsetting) and linear (bounded resources or OO state attributes). (A very similar notion appears in the workof Girard on the Logic of Unity [68] which combines CL and LL.) Hodas has implemented a language basedon this work, called Lolli [84].In an early work Andreoli and Pareschi [12] investigate the permutability properties of LL and argue thatit is better suited for LP that CL, for which severe restrictions are needed (Horn clauses) to make it amenableto e�ective proof search (resolution). The richer set of connectives of LL convey better the programmer'sintentions to the LP system. To a certain degree, the proof is encoded directly in the goal, so the authorsspeak of \syntax-directed proof search". This work is the foundation of the language Logical Objects [13, 15]which is described in the following section. 11

A more recent work of Andreoli [9] investigates more deeply the proof-theoretical properties of LL.First he makes a distinction between asynchronous connectives which require no choice from the proofsearch procedure and introduce no nondeterminism or only \don't care" nondeterminism; and synchronousconnectives which cause the search procedure to make a committed choice and introduce \don't know"nondeterminism which may lead to dead-ends and backtracking. This terminology comes from a concurrencyview on computation, where the latter class of connectives introduces a synchronization (thus sequentiality)point for two parallel search processes.The connectives &, }, ? and 8 are asynchronous. In a one-sided (right-only) sequent calculus withtwo-part (dyadic) contexts (unbounded part � and bounded part �) their corresponding rules are� : �; ' � : �; � : �; ' & [&] � : �; '; � : �; ' } [}]�; ' : �� : �; ?' [?] � : �; '[c=x]� : �; 8x:' [8]The [&] rule says that both conjuncts have to be proved (with unchanged context), eventually in parallel;the [}] rule is a simple syntactic rewriting; the [?] rule moves the exponential formula to the unboundedpart of the context as soon as it appears (i.e. stores it away, but it can be retrieved from there at any time);the [8] rule says that the goal should be proved parameterized with an arbitrary constant c.The connectives
, �, ! and 9 are synchronous. Their rules are� : �; ' � : �; � : �;�; '
 [
] � : �; '� : �; ' � [�1] � : �; � : �; ' � [�2]� : � ` '� : � `!' [!] � : �; '[t=x]� : �; 9x:' [9]The [
] rule involves a choice of splitting the context into two disjoint parts (but notice that the unboundedpart � remains unchanged. Similar concerns about the need of \lazy splitting" of contexts were expressedin [85]); the [�] rule introduces a choice as to which of the two disjuncts shall be tried; the [!] rule makes theirreversible decision to derelict the exponential (we don't have the option of storing !' in � because only ?is the correct exponential marker for right-handed sequents); the [9] rule involves �nding a concrete term twhich will do the job.In pursuit of the \true canonic" proofs, with maximum of permutabilities removed and minimal intro-duction of unnecessary sequentialities, Andreoli considers focusing proofs. They have the following features:� If the goal contains asynchronous formulas (i.e. formulas with asynchronous top-level connective), theyare immediately decomposed. This can be done either in any order, or in parallel.� If the goal has only synchronous formulas, one of them is selected for processing. (Although all ofthem have to be proved after all, this choice will have implications on the depth of a dead-end tree tobe pursued, up to in�nite looping.) After the choice, the proof focuses on this formula and strips alllayers of synchronous connectives from it. This is called a critical focusing section (the terminologycomes from concurrent computing) and its purpose is to reach a dead-end (if we are doomed so) assoon as possible.To formalize this, Andreoli introduces three-part (triadic) sequents where the �rst two parts are again theunbounded and bounded contexts, and the third one is the active part on which the proof procedure operates.However, this declarative formalization of a control strategy makes the presentation of the deductive systemsomewhat too \procedural". Also, since the [&] rule e�ectively copies the rest of the context in two branchesof the proof, its execution as early as possible will duplicate the work to be done for the synchronousconnectives, which is actually the really hard work. This may not matter if the two branches will be pickedup by two processors working in parallel, but it matters in a sequential implementation. (It may happen12

that the two synchronous proofs have to be di�erent in the two branches, e.g. because the two conjuncts of& cause di�erent uni�cations. In such case doing the & �rst is OK.)An important achievement of this work is that focusing proofs are complete for full LL. Andreoli in-troduces a translation from full LL to a syntactically restricted language called LinLog for which focusingproofs are \natural", analogous to the normalization of CL formulas to clausal form.A �nal remark is in place here: since removal of sequentialities and exploiting permutabilities are the verygoal of the Geometry of Interaction, it can be expected that in the future Proof Nets will have importantapplications to LP. Some steps towards automatic construction of proof nets have been taken in [60], butthe status of the work is still more one of a theorem prover than of a LP system.For another survey of this area see [149].4 LL and Models of ConcurrencyCL is not constructive enough to make a good computational formalism without imposing certain restrictionson it. One of the main problems is that the reduction relation for full CL (obtained through the Curry-Howard correspondence) is not con
uent (Church-Rosser). That is to say, the result of reducing a proof(term) depends on the order in which reductions are performed, so nondeterminism is introduced. To avoidthis, a commonly employed restriction is to consider an intuitionistic system (with only one formula in theright side of the sequent) and dismiss negation. This introduces an asymmetry between assumptions (inputs)and conclusions (outputs), which is characteristic of functions. Indeed, probably the most important exampleof a non-commutative operation is application, where it makes a big di�erence which term is the functionand which one is the argument; which one is active and which one is acted upon. This is the natural settingfor functional programming (Section 2), but interaction between parallel processes needs a more symmetricsetting.Such a setting is provided by full LL. It possesses rich symmetries without being non-constructive. Avery important feature in this respect is that linear negation is involutive, yet constructive. Two dual atoms' and '? are informally regarded as producer and consumer, question and answer, assumption and goal,information and anti-information, male and female jacks on electrical cables which can be plugged togetherby a Cut rule. When they meet, an interaction takes place, or the two jacks are plugged together to form aninformation path. The study of this approach is the essence of the Geometry of Interaction [65, 66, 67, 71, 3](see [102] for a gentle introduction to the subject). Proof nets [62, 30] and interaction nets [100, 101, 102]are an important achievement of this research. [67, 71] introduces a formalism in which correctly typedprograms are guaranteed to be deadlock-free (which corresponds in importance to the termination conditionfor the sequential case).Girard has done early work in the direction of applications of LL to concurrency [63]. Pratt in [141, 140]describes in algebraic terms a duality of events and states. He says that events bear time and changeinformation, while states bear information and change (\while away") time. One often speaks of events as\time-stamped"; it is natural to think of states as \information-stamped". Events are arranged in a posetwith joins representing concurrence; states are arranged in a poset with meets representing choice. Thisduality of events and states, time and information, utilizes the Birkho�-Stone duality from lattice theory.A connection with full LL also emerges. Pratt compares the transition from Petri nets to LL through theintroduction of negation (non-monotonic operations) to his earlier work [138] on extending Kleene's algebraof regular expressions to Action logic. In [139] this work is carried further to the development of a geometrictheory of concurrency, in the spirit of Geometry of Interaction. A good philosophical explanation of LLalong these lines can be found in [142].A number of concurrency models have been expressed in LL. Some of them are described in the followingsubsections. 13

4.1 LL and Petri NetsOne of the �rst models of concurrency represented in LL were Petri nets [17, 21, 80, 61, 37, 38, 53, 54, 120,122, 123]. Category theory is used widely in these works, for example in [107] to show that high-level nets(whose markers are data structures) are also LL models. [39] relates two typical uses of category theory forPetri Nets, re�nement (mapping a net to another one) and simulation (mapping possible executions of anet).As an example, the Petri net on Figure 1 can be described by the following LL formulas (names before
quarter

change

load1

dirty

loaded

wash

wet clean

dry

load2

dollar

Figure 1: A Coin-Operated Washer-Dryerthe colons are simply labels and are not part of the formulas; quarter3 means quarter
 quarter
 quarter):change : !(dollar �� quarter4)load1 : !(quarter5 �� loaded)load2 : !(dollar
 quarter �� loaded)wash : !(loaded
 dirty �� wet)dry : !(quarter3
 wet �� clean)The formulas need to be exponentiated because we would like to use them many times. They describe thestructure of the Petri net, like methods (program code) describe the computations which an object canperform. Then we can add an initial marking, say dollar
 dollar
 dirty, as shown on the �gure (two tokensin the position dollar and a load of dirty clothes) and ask whether a certain �nal marking is reachable fromit, say clean
 X. Mart��-Oliet and Meseguer have introduced a generalization of this model called \�nancialgames" [121] by allowing negated atoms (loans). If a marker needed for a transition is not present in acertain position, we can introduce its negation in that position and still perform the transition. Later weare obliged to return the loan (usually the �nal marking should have no occurrence of negated atoms).4.2 LL and Process CalculiIn the second half of his seminal paper [1], Abramsky gives a computational interpretation of full LL in termsof process interaction. It is very instructive to compare this to the interpretation of intuitionistic LL in termsof functional programming given in the �rst half of the paper. Abramsky describes his paper as \a promisingnew approach to the parallel implementation of functional programming : : : , typed concurrent programmingin which correctness is guaranteed by the typing". He introduces an extension of sequents called proofexpressions to record the set of Cuts which have been performed during the proof. In addition to formulasand terms, proof expressions feature multisets of coequations s?t which record that a cut (interaction)involving s : ' and t : '? has taken place, or in other words establish a communication channel between14

two processes. Certain conditions are imposed on the sets of coequations, like acyclicity (no closed loopof variables exist; this gives deadlock-freeness) and linearity (every variable appears exactly twice, as thetwo connectors of a communication channel). The mechanism which makes coequations interact is a set ofrewriting rules including CHAM-like \stirring" (see Section 4.3).LL deduction has been presented as process reduction in CSP by Monteiro [134]. Conversely, asyn-chronous versions of Milner's �-calculus have been presented as a LL theory in works of Miller [132] andBellin and Scott [29], and a number of other issues on mobile processes are discussed by Okada [137]. See[118] for a survey.The abovementioned approaches stay more or less in the \computation as proof reduction" paradigm (Sec-tion 2).3 Other approaches stem from the \computation as proof search" paradigm (Section 3).4 Saraswat hascollaborated with Lincoln [146, 147] to linearize Saraswat's Concurrent Constraint Programming frameworkand extend it with state change (the old cc paradigm only allows monotonic accumulation of constraints).Their system [147] is higher-order and polymorphically typed using a version of Church's Simple Theory ofTypes. An implementation of part of this framework is available, the language Linear Janus.Another work in the same vein5 is the language ACL (Asynchronous Communication in LL) by Kobayashiand Yonezawa [97, 95]. Given a set of \message atoms" Am and a set of \process atoms" AP , the syntax ofACL is de�ned as follows:C ::= AP �� G ClauseG ::= ? j > j Am j ?Am j AP j G } G j R GoalR ::= M
 G j R � R message ReceptionM ::= A?m jM
M multiset of Messages to be receivedGiven an initial con�guration (multiset) of process atoms and a program !P of modalized clauses, the systemconstructs a proof bottom-up by backward chaining. A process atom (name) is unfolded with the body of amatching clause. This body (goal) can proceed with one of the following actions:Termination ? causes the process to terminate (disappear) since ? is the unit element for }, and } is usedto hold the context together.Abort > terminates the whole con�guration of processes, because !P ` >;� is an axiom of LL for any �.(In some approaches this can be interpreted as succesful termination of the program).Message Send Am corresponds to posting a message in the con�guration. A corresponding receiver picksthe message from the con�guration and consumes it. ?Am is a special kind of \modal message" whichdoes not disappear after it is read by a receiver, so it can be used for information sharing.Call AP calls another process, or in other words replaces the current process with AP .Parallel Composition G } G starts two independent processes in parallel. The same connective is usedfor message send, e.g. P �� m } Q means that P sends message m and then becomes Q. In fact thedistinction between messages (Am) and processes (AP) is blurred in this LL setting, and this is usedin [98] to pass processes as �rst-class messages.Message Reception m1
 � � �
 mn
 G waits until all the messages m1; : : : ;mn become available,consumes them and then executes G. R1 � R2 is \external choice": depending on the con�guration,only the receptor Ri that can be satis�ed is executed, and the other one is discarded. For example(a?
 A) � (b?
 B) in the presence of a continues as A, and in the presence of b continues as B.3However \computation" here is understood as \process interaction" instead of the \term reduction" of FP.4Or rather \computation as proof," because many of these approaches utilise don't care non-determinism (as opposed todon't know non-determinism) and so do not have complete proof search procedures. See [96] for a language using don't knownon-determinism.5However in a dual setting. 15

The LL inference corresponding to a process interaction (send-receive act) is!P ` m?i ;mi !P ` Ai; A;�!P ` m?i
 Ai;mi; A;�
 reception!P `�j (m?j
 Aj);mi; A;� � choice!P `�j (m?j
 Aj);mi } A;� } sendAn important part of this work is a concrete phase-space semantics derived through a �xed-point construc-tion. However in order for this construction to work, a limitation of only one de�ning clause per process isimposed.4.3 LL and the Chemical Abstract MachineThere is a large body of work close in spirit to the general approach of the Chemical Abstract Machineof Berry and Boudol [32, 36]. This approach regards a system of distributed processes/agents/objects as achemical solution where molecules wander around in a Brownian-like motion, energised by a \magic stirring"mechanism. When two matching molecules get in contact with their interlocking (dual) parts, a chemicalreaction takes place which consumes (parts) of the molecules and replaces them with a resulting product.\Membranes" serve to separate the solution into hierarchical \subsolutions" and insulate parts which do nothave to interact. A LL-style \realization" of the CHAM was proposed by Andreoli, Ciancarini and Pareschi[10], based on their earlier work on Linear Objects [13] (see also Section 5).Communication is achieved by global broadcasting to all objects which is speci�ed using a \tell marker".This is an extralogical feature of LO; a CHAM-style operational semantics for this language is given in[11]. No bu�ers or message queues are used; the message simply appears as a literal in every object. Amessage in which a particular object is not interested won't a�ect its behavior, it simply will never bepicked by the object. This leads however to garbaging the objects with message leterals they will neveraccess (called \context saturation" in [40]). This problem is solved in [16] by implementing a kind of\garbage collection" through abstract interpretation. A more thorough discussion of di�erent communicationmechanisms (blackboard vs broadcasting) can be found in [14]. Characteristic of their approach is that theyuse di�erent LL connectives as the \separating membranes": the parts of an object are glued by multiplicativedisjunction, and the whole \solution" is held together by additive conjunction.See also [131, 124] for a more general development in Meseguer's Rewriting Logic. The paper [125]represents LL (among other logics) in Rewriting Logic.5 LL and State-Oriented ProgrammingWhile one learns about LL, all of the time one has the feeling that LL is about state. Indeed, the devel-opments in storage management for functional programming (Section 2) demonstrate this. O'Hearn [135]has undertaken further developments aimed at the famous \update in place" problem in FP, which e�ortshave lead more or less to a \logical reconstruction" of Reynolds' Syntactic Control of Interference. This isa type-inference scheme which is able to detect when two instructions do not interfere with each other andthus can be executed in parallel, as well as when a potentially large structure (e.g. an array) is referencedfrom only one place in the program, so can be updated in situ.Uday Reddy [144, 143] builds upon this work to develop an explicit LL Model of State, aiming atincorporating state manipulation in FP and denotational description of (higher-order) imperative languages.(And I strongly believe that this work will be useful for the integration of state-oriented (OO) and LogicProgramming). He points out that the notion of state originally present in LL is rudimentary, in that it isonly usable for low-level implementation developments and does not supply a language for describing statemanipulations. He says for his work \the model is signi�cantly richer than that based on pure LL". Values in�-calculus (formulas of CL) are static and eternal. LL takes the �rst necessary step, making values dynamic(consumable) and volatile. Then the exponentials regain back the lost staticity. But there is more to state:16

it is dynamic, yet not volatile; stable, yet not eternal. Reddy calls this regenerative state: after every accessto it the datum is consumed, but recreates itself automatically. He introduces a special modality y for it. As! is the type constructor for static values, so is y the type constructor for regenerative values. Yet one moretype constructor is introduced, st for read-write states. The characteristic recursive equations for the threemodalities are compared below:!' = 1 & ' & (!'
!') y' = 1 & ('
 y') st ' = 1 & (!'
 st ') & (!' �� st ')The component 1 allows discarding the datum, ' means to use it as a dynamic value and then discard it,(!'
!') means to duplicate a static value, ('
 y') means to read o� a state obtaining a dynamic value andto regenerate the state, (!'
 st ') reads o� a static value (this is just a matter of convenience; a dynamicone could have been returned instead) and regenerates a st state, and �nally (!' �� st ') writes a state witha static value and returns the resulting state (here a linear value could not have been used because we don'thave the right to capture a linear value).Regenerative values (and for that matter st states) use for cloning threading instead of simple contraction.This is motivated by the fact that the two new owners of the clones should know which one is to use it �rstand which one second. Furthermore, this threading obviates the need for non-commutativity in the logic(indeed state develops in time, which is sequential and thus non-commutative). Reddy does not use non-commutative LL [5, 4, 155] but rather introduces a somewhat ad-hoc non-commutative multiplicative >called before.6 The paper contains a sequent proof system, term assignment and a coherent semantics forthe model. The coherent semantics of > shows very interesting properties, placing it somewhere between& and
, thus > possesses a mixture of conjunctive and disjunctive features. The webs (coherent spaces)of the new modalities are de�ned as jy'j = j'j� (the set of all �nite sequences) and jst 'j = ss(j!'j + j!'j)(a certain subset of the disjoint sum of two copies of j!'j, corresponding to reading and writing the state).Compare this to j!'j = }(j'j), the set of �nite coherent subsets of j'j.Reddy discusses the issue who will be willing to program in a system where you have to specify tediouslyevery simple step. Not all weakenings, contractions and threadings need to be explicit in the term assignmentsystem: the smarter the type inference algorithm, the less the burden on the programmer. The importantpoint is that the formalism is present, so a theoretician can use it to design language and implementationfeatures in a logical way. He says \a crucial point at which the language ceases to be functional and becomesimperative is when threading is made explicit". Overall, although the work is very interesting and impor-tant, I �nd the approach somewhat too complicated, especially concerning threading. Hopefully a simplerformalism can be found, at least for some restricted applications.A famous work on Object-Oriented Logic Programming is the language Linear Objects (LO) developedby Andreoli and Pareschi at ECRC, Germany [13, 15]. They have written many papers on LO, their focusshifting initially from state representation (similar to an earlier proposal of John Conery [47]), later toconcurrency issues (described in Section 4). In their approach, an object is a multiplicative disjunction ofattribute literals, which as a whole is a free-
oating additive conjunct in the \solution" containing all objects.I will describe here only one feature of their model, builtin inheritance. Unlike traditional OOP, methodsin LO are not attached to objects (classes) explicitly by the programmer, but a method is applicable everytime its head matches (through ACI-uni�cation) a part of the object state. Then this part is consumedand replaced by the result of the method. Adding more attributes to the object (specialization) does notrender any methods \of the superclass" inapplicable (so method overriding is somewhat problematic). Thisis similar to delegation-based object languages (e.g. Self), but constitutes an even more radical departurefrom \classical"7 OOP, because delegates are not speci�ed explicitly.For a survey on representing state in OOLP see [6].6The same operator appears in a paper by Monteiro [134] (see Section 4.2).7That is, class-based OOP (pun unintended) 17

6 Other ApplicationsThis section describes some less \populated" (though not necessarily less important) areas of application ofLL which did not �t in the sections above.6.1 LL for Logical Operational Semantics of PrologA couple of papers by Serenella Cerrito give a logical account for some operational features of Prolog.The �rst paper [41] is in a traditional vein and gives a LL semantics for allowed programs similar to Clark'scompletion, the only di�erence being that LL is used instead of CL. A program is allowed if every variableoccurring in the head of a clause also occurs in a positive literal in the body, thus SLDNF (resolutionwith Negation-As-Failure (NAF)) will always be able to pick for evaluation a grounded negation, so no\
oundering" goals will happen (NAF is \safe"). A completeness result for SLDNF with respect to thissemantics is proved. This generalizes slightly the earlier semantical result which demanded the program tobe not only allowed, but also hierarchical (strati�ed).The second paper [42, 43] develops a suggestion of Girard that LL can be used to account for the di�erencebetween the \internal" logic of Prolog (that is, the speci�c left-to-right selection strategy and depth-�rstsearch which Prolog employs) and the \external" logical semantics which are ascribed to Prolog. It givesa LL axiomatization of NAF by encoding precisely not only the clauses themselves, but also the order ofliterals in the bodies and the order of clauses in the program. For example, the program hp a; b; p ci(angle brackets indicate sequence) is encoded in LL asa
 b �� p; (a? � (a
 b?))
 c �� p:The second clause accounts for all possible ways of the �rst clause to fail. Actually Cerrito gives a sequentencoding; also the failure conditions of the whole procedure of a given predicate letter are to be speci�ed.It is curious to note that this axiomatization corresponds more closely to what Prolog actually does thaneven SLDNF, an operational semantics. Although somewhat clumsy (e.g. the use of non-commutative LLwould probably do the translation more natural), in my opinion this axiomatization compares favorably tomany of the known semantics for NAF.A paper by Ji�r��Zlatu�ska [156] gives a LL semantics to committed-choice guarded
at Prologs such asConcurrent Prolog or Parlog. He uses one-sided sequents and translates a guarded clause(H G1; : : : ; GmjB1; : : : ; Bn)to the LL proper axiom ` H �� ((G1
 � � �
 Gm) �� (B1 } � � � } Bn)):The guards are de�ned by proper axioms ` Gi or b �� (d �� ? (b=builtin test, d=de�ning condition of thetest). An alternative to translating the program to a set of proper axioms is to translate it to a formulaP =!(C1 & � � � & Cm), where C1; : : : ; Cm are the translations of the individual clauses. Then the computationfrom a set of goals (state) p1; : : : ; pk to the set of goals q1; : : : ; ql is represented by the provability of thesequent ` P?; (p1 } � � � } pk)?; q1; : : : ; qk:The semantics is only restricted to deadlock-free computations.6.2 LL and Non-Monotonic Issues in AIOne of the most di�cult problems in Logics in AI is non-monotonic reasoning (NMR). NMR and the relatedissues of knowledge base revision are inherently very di�cult, but I think that quite often another problemwhich is not that di�cult is put in the same bag as NMR and is \forced" to behave badly. This is theproblem of state change, knowledge base update and the related Frame problem. The di�erence between18

revision and update is that the former involves modifying a knowledge base upon acquiring new knowledgewithout any change in the real world (thus some of the possible worlds present in our model can be foundinfeasible in light of the new knowledge); whereas the latter involves actualization of the knowledge to re
ecta change in the real world and cannot discard any of the possible worlds [94]. I believe that LL is (will be)very useful for update, but probably not that much for revision.6.2.1 :Linear Deductive Planning An area where update and state change are prominent is Deductive Planning .Quite early Wolfgang Bibel has noticed that a modi�cation of his connection method for automated proofcan make Frame axioms unnecessary and makes a good planning formalism. The mentioned modi�cationconsists of a linearization of the graph, allowing every literal to have only one outgoing edge (to be used onlyonce). He has been criticised on semantic grounds, namely that since a semantics for the linearization is notknown, it constitutes no more than a clever trick of unclear virtue. Later Bibel et al. [33] gave a semanticsfor this method. Further development of this method was done by Fronh�ofer [56, 57].A series of works with an emphasis on an equational implementation of the idea is one by Josef Schnee-berger, Ste�en H�olldobler and his students at Techniche Hochschule Darmstadt [86, 87, 78, 79]. Theyrepresent the components of state as a multiset term held together by an Associative-Commutative-withIdentity operation (ACI-operation) �, which can be thought of as multiset union. It is important that �is not idempotent. The state of the planner is represented by the predicate plan(I; P;G) where I is themultiset representing the initial (current) state, G is the multiset representing the goal state, and P is a listof actions which transform I to G. An action a with conditions c1; : : : ; cn and e�ects e1; : : : ; em is representedas the clause plan(I � e1 � � � � � em; [ajP]; G) :{ plan(I � c1 � � � � � cn; P;G):An additional clause plan(G�X; []; G) gives termination (if the initial state is a subset of the �nal state thenthe empty plan su�ces).What is important here is that Prolog terms have to be uni�ed modulo the ACI operation (ACI-uni�cation). H�olldobler calls resolution with builtin ACI-uni�cation SLDE resolution. These ideas are quiteclose to work of Meseguer [129, 128, 130] to formalize concurrent programming by non-equational (one-way)ACI-rewriting. The connection has been recently developed by Mart��-Oliet and Meseguer [125, 124], see alsorecent work of Malcolm [119]. Techniques for ACI-rewriting are described in e.g. [110, 83, 116].H�olldobler et al. [86, 78] prove that at least for deductive planning, three proposed approaches |thelinear connection method, the ACI-rewriting approach and the LL-based approach (see below)| are equiva-lent. They also consider issues of change, action and speci�city (selecting the method which matches largestpart of the state) [79].Masseron et al. [127] consider planning in a logic deduction setting. They �rst describe from philosophicalgrounds an abstract model of actions (basically relations with speci�c properties) and then \implement" thisin LL. They consider a blocks world example and the three socks example. In the companion paper [126]Masseron lays down the beginnings of a geometric theory of (conjunctive only) actions, which turns out tobe a simpli�cation of Petri nets, with only one edge allowed to enter and exit a position (so positions arenot drawn explicitly). Similar ideas in a logic programming setting are presented in [96] (see Section 4.2 formore information on ACL).Linear deductive planning is a very illuminating example of the utility of LL for reasoning about change.With a relatively simple application of LL and parts of the Geometry of Interaction, researchers were ableto largely overcome the Frame problem which was undefeated for such a long time maybe just because itwas looked upon from the wrong angle. 19

6.2.2 :LL and Hierarchies with Exceptions LL itself is monotonic, but it contains a kind of non-monotonicity whichis more basic than the \arti�cially imposed" non-monotonicity present in, say, Default Logic. Namely, afterperforming a derivation the initial formula gets consumed and is no more available for other derivations.Due to the symmetry of LL, sometimes '? can be regarded as a question whether ' holds, so adding itto a system can trigger such a derivation. A formally more clear non-monotonicity is the one of ` (and��) w.r.t. adding formulas to the antecedent: if � ` � then usually (in the absence of non-logical axioms)�; ' 6` �. This non-monotonicity can be used pro�tably for representing classi�cation hierarchies withexceptions (inheritance with overriding).The weary Tweety problem about penguins and birds is represented in a hierarchy with exceptions asfollows: p!b; b!f; p;f(penguins are birds, birds are flying objects, yet penguins are not flying objects). Fouquer�e and Vauzeilles[55] propose to code this by the following non-logical (proper) axioms in LL:p ` p+
 b
 f�
 !(f �� 1) (1)b ` b+
 f (2)f ` f+ (3)A neutral atom f represents initial and intermediate data, f+ represents a positive answer, and f� representsa negative answer. For every node f in the hierarchy, we have f ` f+ to con�rm that the node has beenreached (positively), in addition for all the outgoing positive edges f!p1; : : : ; f!pm we simply add to thesequent p1
 � � �
 pm. The representation of the negative edges f;n1; : : : f;nk is just a bit more complex:we add the negative conclusion n�i , but we also have to cancel the possibility for arriving at a positiveconclusion. (ni �� 1) serves for this purpose, because ni
 (ni �� 1) ` 1, and 1 is the identity for tensor(so '
 1 = '). We actually use the exponentiated version !(ni �� 1) in order to be able to cancel anynumber of nis which may be born along di�erent paths from the source node. It can be seen that whilethe positive information is defeasible (f+ is concluded only \at the node f", i.e. through the atom f , andit can be cancelled there by !(f �� 1)), the exceptions are de�nitive. However, the authors mention anextension of the framework with double (counter-) exceptions. The authors also give a proofnet-like theoryfor \standard" proofs of simple sequents (their nets are bicolored node- and edge-colored directed graphswhich closely resemble the topology of the original hierarchical network). They compare their framework toDefault Logic and prove that for the particular domain, Default Logic is equivalent to the simple-sequentfragment of Intuitionistic LL.Let's see how does this formalization work. Given p (\Tweety is a penguin"), we deduce the right-handside of (1) and then by (2) easily obtainp+
 b+
 f
 f�
 !(f �� 1): (4)Now we apply dereliction (see Section 1.3) to remove the !, then linear Modus Ponens to \cancel" f withf �� 1 (1 is \empty" in a multiplicative conjunctive setting) to reach the desired answerp+
 b+
 f�:Unfortunately nothing can stop us from applying (3) to (4) and obtaining the contradictoryp+
 b+
 f+
 f�
 !(f �� 1):\Cancellation" no longer works, and clearly f+
 f� is useless. There is no logical connection between f ,f+ and f�, so the authors use a syntactic criterion (\simple sequents") to weed out such useless conclusions.They mention that we can (incidentally) use f? for f�, in which case LL will detect the contradiction for20

us, but nevertheless it would have already been committed . The shortcoming is that at the point (4), nothingguides the proof search procedure in the right direction (which is to apply the \internal reduction" in (4)and not to apply the non-logical axiom (3)).Although LL allows us to avoid a contradictory conclusion which in CL could have been obtained walkingalong two con
icting threads of reasoning (by consuming the shared resource which is at the head of thetwo threads), it gives us no clue as to which one is the \right" thread. This information has to be providedby extralogical means (if at all). Thus, although [55] manages to capture hierarchies with exceptions in alogical way (as opposed to Default Logic which is extra-logical) the Cut-elimination which LL enjoys is inthis case only a marginal advantage over Default Logic.Another shortcoming of this approach is a lack of modularity. A penguin is much more things thansimply a bird: it is a black-and-white thing, a fat thing, a polar inhabitant, etc. So there will be manypositive arrows going out of it. But we cannot represent these arrows in separate theory modules, they allneed to be dumped in one formula. Thus the only mode of operation of such a system is to pose a query pand get back a whole bunch of properties. The reason why it is hard to separate the properties is that if wedo this and then try to obtain concurrently the answers for two properties, we have to supply two copies ofp to \feed" the two relevant threads. But there are no logical means to prevent the proof search procedurefrom running these two p's along the same path (using them not as we intended) and obtain a contradiction.And to begin with, we had to have extra-logical means to specify the two interesting paths anyway.So in (relatively) static situations like inheritance networks, logic theory modules, etc., in my opinion LLdoes not give such a signi�cant advantage over CL as for state change. Maybe module manipulation calculilike the one of Goguen and Meseguer based on equational logic (the family of languages OBJ, see e.g. [75])are more appropriate here.7 Final RemarksDisclaimer: the distribution of the works to the di�erent sections is somewhat arbitrary; often the same workhad to be mentioned in more than one section. I tried to make the connections clear. After all everythingis connected to everything else.8Caveat: some of the exposition above may be inexact or even incorrect, and certainly in many places itis incomplete. I have read less than half of the referenced papers, and I understand well half of that half.(My personal interest is Object-Oriented Logic Programming). Comments and corrections are most welcome.There are di�erent opinions about LL and its applicability/importance to computing. They range fromscepticism:I am much more sceptic than you about LL. It might , of course, turn out to be useful/important.There is, surely, a lot of activity concerning it (I contributed to it myself). But it can be muchado about (almost) nothing. So far there are a lot of promises, but they are still only promises.Time will tell if this is not just a matter of fashion. I hope it is not, but I suspect it is. [Answeron the Linear mailing list to a question by Jon Barwise]through cautiousness:An interesting development in logic of some signi�cance to theoretical computer science [81, 82].to enthusiasm and excitement. Here is what Jon Barwise himself says after getting a marvelous philosophicalexplanation \why LL" from Vaughan Pratt [142].\May you live in exciting times" goes the old curse.I found Vaughan's message extremely interesting. That is to say, I found it helpful, exciting, anddaunting, all at once.8As Mark Twain puts it, \Old maidens are bene�cial to livestock, because they usually have cats which chase mice whicheat ground bees which pollinate alfalfa which is fed to cattle."21

� Helpful because it really gives me a way to think about LL that I can understand.� Exciting because it does indeed point to genuine connections between his view of LL andwork in Situation Theory on information
ow.� Daunting because it shows I really do have to understand the work in LL in order to continuewhat I have been up to.Notwithstanding the di�erent opinions, LL and its applications have certainly made amazing progress for the6 years since its inception. De�nitely Barwise's words above do not hold exclusively for Barwise's own work,because LL has exhibited \genuine connections" to many �elds of Computing Science. There even appearsto exist something of a \linearization fashion", for example Curien linearised his Concrete Data Structures[48].Whether this is only a momentary enthusiasm, time will show. At least I hope it won't have negativeconsequences to the �eld (like the hype around AI a decade ago), because the relative technicality of thesubject makes it unsuitable for enthusing wide audiences and the press.AcknowledgementsNarciso Mart��-Oliet and two anonymous referees made valuable suggestions which signi�cantly improved thepaper. I am especially indebted to Narciso for correcting a number of typos.I am grateful to Andrea Asperti for pointing me out the work on optimal lambda reduction.Large part of the bibliography came from publicly available bibliographies collected by Andre Scedrovand Anne Troelstra.References[1] S. Abramsky. Computational interpretations of linear logic. Theoretical Comput. Sci., 111:3{57, 1993.Earlier version appeared as Imperial College Technical Report DOC 90/20, Oct. 1990.[2] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative linear logic.In R. Shyamasundar, editor, Foundations of Software Technology and Theoretical Computer Sci-ence (FST-TCS'92), pages 291{301, New Delhi, India, Dec. 1992. Full paper available as tech-nical report DOC 92/24, Imperial College, London, Sep. 1992 and from theory.doc.ic.ac.uk:theory/papers/Abramsky/gfc.dvi.[3] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction. In Logic in ComputerScience (LICS'92), pages 211{222, Santa Cruz, CA, June 1992. IEEE Computer Society Press. Fullversion to appear in Information and Computation.[4] V. Abrusci. Noncommutative intuitionistic linear propositional logic. Zeitschrift f�ur MathematischeLogik und Grundlagen der Mathematik, 36:297{318, 1990.[5] V. Abrusci. Phase semantics and sequent calculus for pure noncommutative classical linear proposi-tional logic. Journal of Symbolic Logic, 56(4):1403{1451, Dec. 1991.[6] V. Alexiev. Mutable object state for object-oriented logic programming: A survey. Techni-cal Report TR93{15, University of Alberta, Aug. 1993. Available from ftp.cs.ualberta.ca:pub/TechReports/TR93-15, �le TR93-15.ps.Z or TR93-15.a4.ps.Z.[7] G. T. Allwein. A neigborhood model for linear logic's exponentials. Manuscript, Visual InferenceLaboratory, Indiana University, Bloomington, IN, Nov. 1992.[8] G. T. Allwein and J. M. Dunn. Kripke models for linear logic. Journal of Symbolic Logic, 58(2):514{545,1993. 22

[9] J.-M. Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic and Compu-tation, 2(3), 1992.[10] J.-M. Andreoli, P. Ciancarini, and R. Pareschi. Interaction abstract machines. In G. Agha,K. Yonezawa, and P. Wegner, editors, Research Directions in Concurrent Object Oriented Program-ming. MIT Press, 1993.[11] J.-M. Andreoli, L. Leth, R. Pareschi, and B. Thomsen. True concurrency semantics for a linear logicprogramming language with broadcast communication. In Theory and Practice of Software Develop-ment (TAPSOFT'93), pages 182{198, 1993.[12] J.-M. Andreoli and R. Pareschi. Logic programming with sequent systems: A linear logic approach.In P. Schroeder-Heister, editor, Intl. Workshop on Extensions of Logic Programming, number 475 inLNAI, pages 1{30, T�ubingen, Germany, 1989.[13] J.-M. Andreoli and R. Pareschi. LO and behold! Concurrent Structured Processes. In ECOOP-OOPSLA'90, Ottawa, Ontario, 1990. (SIGPLAN Notices, 25(10):44{56, Oct. 1990).[14] J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowledge. In Object-OrientedProgramming, Systems, Languages and Applications (OOPSLA'91), pages 212{229, Nov. 1991. ACMSIGPLAN Notices, 26(11).[15] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. NewGeneration Computing, 9(3-4):445{473, 1991. Shorter version appeared in D.H.D. Warren and P.Szeredi (eds), Intl. Conf. on Logic Programming (ICLP'90), Jerusalem, Israel, June 1990, pages 495{510.[16] J.-M. Andreoli, R. Pareschi, and T. Castagnetti. Abstract interpretation of linear logic programming.In International Logic Programming Symposium (ILPS'93), pages (295{314 or 315{334)? MIT Press,1993.[17] A. Asperti. A logic for concurrency. Technical report, Dipartimento di Informatica, Universit�a di Pisa,Nov. 1987.[18] A. Asperti. A linguistic approach to deadlock. Rapport de Recherche LIENS-91-15, Ecole NormaleSuperieure de Paris, 1991. Submitted to Mathemathical Structures in Computer Science.[19] A. Asperti. Linear logic, comonads, and optimal reductions. Fundamenta Informaticae, 1994. Specialissue devoted to Categories in Computer Science. To appear.[20] A. Asperti, V. Danos, C. Laneve, and L. Regnier. Paths in the lambda calculus. Three years ofcommunications without understanding. Draft, submitted to LICS'94.[21] A. Asperti, G.-L. Ferrari, and R. Gorrieri. Implicative formulae in the `proofs as computations' analogy.In Principles of Programming Languages (POPL'90), pages 59{71, San Francisco, CA, Jan. 1990. ACM.[22] A. Asperti and C. Laneve. Interaction systems I: The theory of optimal reductions. Technical Report1748, INRIA-Rocquencourt, Sept. 1992. Available from cma.cma.fr: pub/papers/cosimo/IS1.ps.Z.[23] A. Asperti and C. Laneve. Interaction systems II: The practice of optimal reductions. Techni-cal Report UBLCS-93-12, Universit�a di Bologna, May 1993. Available from ftp.cs.unibo.it:pub/TR/UBLCS/93-12.ps.Z.[24] A. Asperti and C. Laneve. Optimal reductions in interaction systems. In Theory and Practice ofSoftware Development (TAPSOFT'93), number 668 in LNCS, pages 485{500, 1993.23

[25] A. Asperti and C. Laneve. Paths, computations and labels in the lambda-calculus. In RewritingTechniques and Applications (RTA'93), number 690 in LNCS, pages 152{167, 1993.[26] A. Avron. Simple consequence relations. Information and Computation, 92(1):105{139, 1991.[27] M. Barr. ?-Autonomous categories and linear logic. Mathemathical Structures in Computer Science,1(2):159{178, July 1991.[28] G. Bellin. Proof nets for multiplicative and additive linear logic. Draft, submitted to Annals of Pureand Applied Logic.Earlier version appeared as University of Edinburgh Report LFCS-91-161, May 1991.Available from theory.doc.ic.ac.uk: theory/papers/Bellin, Apr. 1993.[29] G. Bellin and P. Scott. On the �-calculus and linear logic. Manuscript to be submitted to Proc. MFPS8, Oxford, Nov. 1992.[30] G. Bellin and J. van de Wiele. Proof nets and typed lambda calculus. I. Empires and kingdoms. Draft,available from theory.doc.ic.ac.uk: theory/papers/Bellin/king.dvi, May 1993.[31] N. Benton, G. Bierman, V. de Paiva, and J. Hyland. Term assignment for intuitionistic linear logic.Manuscript, Sept. 1992.[32] G. Berry and G. Boudol. The Chemical Abstract Machine. In Principles of Programming Languages(POPL'90), pages 81{94, San Francisco, CA, Jan. 1990. ACM.[33] W. Bibel, L. F. del Cerro, B. Fronh�ofer, and A. Herzig. Plan generation by linear proofs: On semantics.In German Workshop on Arti�cial Intelligence (GWAI'89), number 216 in Informatik-Fachberichte,Eringerfeld, Geseke, Germany, Sept. 1989. Springer-Verlag.[34] A. Blass. A game semantics for linear logic. Annals of Pure and Applied Logic, 56:183{220, 1992.Special Volume dedicated to the memory of John Myhill.[35] R. Blute. Proof nets and coherence theorems. In D. Pitt et al., editors, Category Theory and ComputerScience, number 530 in LNCS, pages 121{137, Paris, Sept. 1991.[36] G. Boudol. Some Chemical Abstract Machines. Technical Report BP 93, INRIA Sophia Antipolis,1993.[37] C. Brown. Linear Logic and Petri Nets: Categories, Algebra and Proof. PhD thesis, University ofEdinburgh, 1990. Technical Report ECS-LFCS-91-128.[38] C. Brown and D. Gurr. A categorical linear framework for Petri nets. In Logic in Computer Science(LICS'90), pages 208{219, Philadelphia, PA, June 1990. IEEE Computer Society Press.[39] C. Brown and D. Gurr. Re�nement and simulation of nets { a categorial characterisation. In K. Jensen,editor, Applications and Theory of Petri Nets, number 616 in LNCS, pages 76{92, She�eld, UK, June1992.[40] S. Castellani and P. Ciancarini. Comparative semantics of LO. Technical Report UBLCS-94-7, University of Bologna, Apr. 1994. Availabile by anonymous FTP from ftp.cs.unibo.it:/pub/TR/UBLCS/SemanticsOfLO.ps.gz.[41] S. Cerrito. A linear semantics for allowed logic programs. In Logic in Computer Science (LICS'90),pages 219{227, Philadelphia, PA, June 1990. IEEE Computer Society Press.[42] S. Cerrito. A linear axiomatization of negation as failure. Journal of Logic Programming, 12(1-2):1{24,Jan. 1992. 24

[43] S. Cerrito. Negation and linear completion. In L. del Cerro and M. Penttonen, editors, IntensionalLogics for Programming. Clarendon Press, June 1992.[44] H. Chau. A proof search system for a modal substructural logic based on Labelled Deductive Systems.In A. Voronkov, editor, Logic Programming and Automated Reasoning (LPAR'92), number 624 inLNAI (subseries of LNCS), St. Petersburg, Russia, July 1992. Extended version available as technicalreport DOC 93/1, Imperial College, London, Apr. 1993 (17 p.).[45] J. Chirimar, C. Gunter, and J. Riecke. Proving memory management invariants for a language basedon linear logic. In W. Clinger, editor, Lisp and Functional Programming (LFP'92), pages 139{150,San Francisco, CA, June 1992. In ACM LISP Pointers 5(1).[46] J. Chirimar, C. Gunter, and J. Riecke. Reference counting as a computational interpretation oflinear logic, 1992. Manuscript, available from research.att.com: dist/riecke/linear-logic-journal.ps.[47] J. S. Conery. Logical objects. In R. A. Kowalski and K. A. Bowen, editors, Fifth InternationalConference and Symposium on Logic Programming, pages 420{434, 1988.[48] P.-L. Curien. Concrete data structures, sequential algorithms, and linear logic. Message on the `Linear'mailing list. Available from theory.stanford.edu: pub/linear, 4 June 1992. File 10.summary.[49] V. Danos and L. Regnier. The structure of multiplicatives. Archive for Mathematical Logic, 28:181{203,1989.[50] V. Danos and L. Regnier. Local and asynchronous beta-reduction. In Logic in Computer Science(LICS'93), pages 296{306, Montreal, 1993. IEEE Computer Society Press.[51] V. de Paiva. The Dialectica categories. In J. Gray and A. Scedrov, editors, AMS-IMS-SIAM JointSummer Research Conference Categories in Computer Science and Logic, number 92 in ContemporaryMathematics, pages 47{62, Boulder, CO, June 1987. American Mathematical Society, 1989.[52] V. de Paiva. A Dialectica-like model of linear logic. In D. Pitt et al., editors, Category Theory andComputer Science, number 389 in LNCS, pages 313{340, Manchester, Sept. 1989.[53] U. Engberg and G. Winskel. Petri nets as models of linear logic. In A. Arnold, editor, Colloquium onTrees in Algebra and Programming (CAAP'90), number 431 in LNCS, pages 147{161, Copenhagen,Denmark, May 1990.[54] U. Engberg and G. Winskel. Completeness results for linear logic on Petri nets. In A. Borzyszkowskiand S. Soko lowski, editors, Mathematical Foundations of Computer Science (MFCS'93), number 711in LNCS, pages 442{452, Gda�nsk, Poland, Aug. 1993. Full version is DAIMI PB, Jan. 1993.[55] C. Fouquer�e and J. Vauzeilles. Linear logic and exceptions. Manuscript, Universit�e Paris-Nord. Emailaddress: fcf,jvglipn.univ-paris13.fr, Dec. 1993.[56] B. Fronh�ofer. Linearity and plan generation. New Generation Computing, 5:213{225, 1987.[57] B. Fronh�ofer. Linear proofs and linear logic. In D. Pearce and G. Wagner, editors, Logics in AI:European Workshop JELIA'92, number 633 in LNAI (subseries of LNCS), pages 106{125, Berlin,Germany, Sept. 1992.[58] D. Gabbay and R. de Queiroz. Extending the Curry-Howard interpretation to linear, relevance andother resource logics. Journal of Symbolic Logic, 57(4):1319{1365, Dec. 1992.[59] J. Gallier. Constructive logics. Part II: Linear logic and proof nets. Research Report PRL-RR-9,Digital Equipment Corporation, Paris Research Lab, May 1991.25

[60] D. Galmiche and G. Perrier. A procedure for automatic proof nets construction. In A. Voronkov,editor, Logic Programming and Automated Reasoning (LPAR'92), number 624 in LNAI (subseries ofLNCS), pages 42{53, St. Petersburg, Russia, July 1992.[61] V. Gehlot and C. Gunter. Normal process representatives. In Logic in Computer Science (LICS'90),pages 200{207, Philadelphia, PA, June 1990. IEEE Computer Society Press.[62] J.-Y. Girard. Linear logic. Theoretical Comput. Sci., 50:1{102, 1987.[63] J.-Y. Girard. Linear logic and parallelism. In M. Venturini Zilli, editor, Mathematical Models forthe Semantics of Parallelism, number 280 in LNCS, pages 166{182. Springer Verlag, 1987. AdvancedSchool, Rome, September 1986.[64] J.-Y. Girard. Quanti�ers in linear logic. In Temi e prospettivi della logica e della �loso�a della sziencacontemporanee (SILFS), volume 1, pages 11{33, Cesena, Italy, Jan. 1987. CLUEB, Bologna, Italy.[65] J.-Y. Girard. Towards a geometry of interaction. In J. Gray and A. Scedrov, editors, AMS-IMS-SIAM Joint Summer Research Conference Categories in Computer Science and Logic, number 92 inContemporary Mathematics, pages 69{108, Boulder, CO, June 1987. American Mathematical Society,1989.[66] J.-Y. Girard. Geometry of interaction I: Interpretation of system f. In R. Ferro et al., editors, LogicColloquium '88, pages 221{260, Padova, Italy, Aug. 1989. North-Holland.[67] J.-Y. Girard. Geometry of interaction II: Deadlock-free algorithms. In P. Martin-L�of and G. Mints,editors, Intl. Conf. on Computer Logic (COLOG'88), number 417 in LNCS, pages 76{93, 1990.[68] J.-Y. Girard. On the unity of logic. Pr�epublication No. 27, Equipe de Logique Math�ematique, Universit�eParis 7, 1991. To appear in Annals of Pure and Applied Logic (Proceedings ALC'90).[69] J.-Y. Girard. Quanti�ers in linear logic II. In G. Corsi and G. Sambin, editors, Nuovi problemi dellalogica e della �loso�a della scienza (SILFS), volume II, Viareggio, Italy, Jan. 1990, 1991. CLUEB,Bologna, Italy. Also available as Equipe de Logique Math�ematique Pr�epublication No. 19, Universit�eParis 7.[70] J.-Y. Girard. Logic and exceptions: A few remarks. Journal of Logic and Computation, 2:111{118,1992.[71] J.-Y. Girard. Geometry of interaction III: The general case. In Linear Logic Workshop, CornellUniversity, June 1993. MIT Press, to appear.[72] J.-Y. Girard and Y. Lafont. Linear logic and lazy computation. In H. Ehrig, R. Kowalski, G. Levi, andU. Montanari, editors, Theory and Practice of Software Development (TAPSOFT'87), Vol. 2, number250 in LNCS, pages 52{66, Mar. 1987.[73] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Number 7 in Cambridge Tracts in TheoreticalComputer Science. Cambridge University Press, 1988.[74] J.-Y. Girard, A. Scedrov, and P. Scott. Bounded linear logic: A modular approach to polynomialtime computability. Theoretical Comput. Sci., 97:1{66, 1992. Also available as technical report MS-CIS-91-59, University of Pennsylvania. An extended abstract appeared in S.R. Buss and P.J. Scott(eds.), Mathematical Sciences Institute Workshop on Feasible Mathematics, Ithaca, NY, June 1989,Birkhauser 1990.[75] J. Goguen, D. Coleman, and R. Gallimore, editors. Applications of Algebraic Speci�cation Using OBJ.Cambridge University Press, 1993. 26

[76] G. Gonthier, M. Abadi, and J.-J. L�evy. The geometry of optimal lambda reduction. In Principles ofProgramming Languages (POPL'92), pages 15{26, Albuquerque, NM, Jan. 1992. ACM.[77] G. Gonthier, M. Abadi, and J.-J. L�evy. Linear logic without boxes. In Logic in Computer Science(LICS'92), pages 223{234, Santa Cruz, CA, June 1992. IEEE Computer Society Press.[78] G. Gro�e, S. H�olldobler, and J. Schneeberger. Linear deductive planning. Technical Report AIDA-92-08, Intellectik, Informatik, Techniche Hochschule Darmstadt, 1992.[79] G. Gro�e, S. H�olldobler, J. Schneeberger, U. Sigmund, and M. Thielscher. Equational logic program-ming, actions, and change. In Joint Intl. Conf. and Symp. on Logic Programming (JICSLP'92), 1992.Also in Logic and Change, a workshop at GWAI'92.[80] C. Gunter and V. Gehlot. Nets as tensor theories. In G. D. Michelis, editor, 10-th Intl. Conf. onApplication and Theory of Petri Nets, pages 174{191, Bonn, Germany, 1989. Updated paper appearedas Technical Report MS-CIS-89-68 Logic & Computation 17, Department of Computer and InformationScience, University of Pennsylvania, Oct. 1989.[81] J. Harland and D. Pym. The uniform proof-theoretic foundation of linear logic programming (extendedabstract). In V. Saraswat and K. Ueda, editors, Intl. Symposium on Logic Programming (SLP'91),pages 304{318, 1991. The full paper is available as University of Edinburgh Technical Report ECS-LFCS-90-124, Nov. 1990.[82] J. Harland and D. Pym. On resolution in fragments of classical linear logic (extended abstract). InA. Voronkov, editor, Logic Programming and Automated Reasoning (LPAR'92), number 624 in LNAI(subseries of LNCS), pages 30{41, St. Petersburg, Russia, July 1992.[83] M. Henz. Term rewriting in associative commutative theories with identities. Master's thesis,State University of New York at Stony Brook, Dec. 1991. Available by anonymous FTP fromduck.dfki.uni-sb.de: pub/papers/MT-Henz.ps.Z.[84] J. Hodas. Lolli: An extension of �-Prolog with linear logic context management. In 1992 �PrologWorkshop, 1992. Available from ftp.cis.upenn.edu: pub/Lolli.[85] J. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linearlogic. Journal of Information and Computation, 110(2):327{365, May 1994. Availableby WWW from http://www.cis.upenn.edu/ ~dale or by FTP from ftp.cis.upenn.edu:pub/papers/miller/ic94.dvi.Z. An extended abstract appeared in LICS'91:32{42, July 1991.[86] S. H�olldobler. On deductive planning and the frame problem. In A. Voronkov, editor, Logic Program-ming and Automated Reasoning (LPAR'92), number 624 in LNAI (subseries of LNCS), pages 13{29,St. Petersburg, Russia, July 1992.[87] S. H�olldobler and J. Schneeberger. A new deductive approach to planning. New Generation Computing,8:225{244, 1990.[88] S. Holmstr�om. Linear functional programming. In T. Johnsson, S. P. Jones, and K. Karlsson, editors,Workshop on Implementation of Lazy Functional Languages, pages 13{32, 1988.[89] W. Howard. The formulas-as-types notion of construction. In To H.B. Curry: Essays on CombinatoryLogic, Lambda-Calculus and Formalism, pages 479{490. Academic Press, 1980.[90] H. B. Jr. Lively linear lisp|`look ma, no garbage!'. SIGPLAN Notices, 27(8):89{98, Aug. 1992.[91] M. Kanovich. The multiplicative fragment of linear logic is NP-complete. ITLI Prepublication SeriesX-91-13, University of Amsterdam, 1991. 27

[92] M. Kanovich. Horn programming in linear logic is NP-complete. In Logic in Computer Science(LICS'92), pages 200{210, Santa Cruz, CA, June 1992. IEEE Computer Society Press. Also Universityof Amsterdam ITLI Prepublication Series X-91-14.[93] V. Kathail. Optimal Interpreters for Lambda-Calculus Based Functional Languages. PhD thesis, MIT,1990.[94] H. Katsuno and A. Mendelzon. On the di�erence between updating a knowledge base and revising it.In J. Allen, R. Fikes, and E. Sandewall, editors, Knowledge Representation and Reasoning (KR'91),pages 387{394, Boston, MA, Apr. 1991.[95] N. Kobayashi and A. Yonezawa. ACL | a concurrent linear logic programming paradigm. In Inter-national Logic Programming Symposium (ILPS'93), pages 279{294. MIT Press, 1993.[96] N. Kobayashi and A. Yonezawa. Reasoning on actions and change in a linear logic programming. Tech-nical report, University of Tokyo, 1993. Draft, available by FTP from camille.is.s.u-tokyo.ac.jp/pub/papers/.[97] N. Kobayashi and A. Yonezawa. Asynchronous communication model based on linear logic. FormalAspects of Computing, (3), 1994. Short version appeared in Joint Intl. Conf. and Symp. on LogicProgramming (JICSLP'92), Washington, DC, Nov. 1992, Workshop on Linear Logic and Logic Pro-gramming.[98] N. Kobayashi and A. Yonezawa. Typed higher-order concurrent linear logic programming. TechnicalReport 94-12, University of Tokyo, July 1994. Available by FTP from camille.is.s.u-tokyo.ac.jp/pub/papers/ TR94-12-hacl-a4.ps.Z.[99] Y. Lafont. The linear abstract machine. Theoretical Comput. Sci., 59(1,2):157{180, 1988. Somecorrections in volume 62:327{328.[100] Y. Lafont. Interaction nets. In Principles of Programming Languages (POPL'90), pages 95{108, SanFrancisco, CA, Jan. 1990. ACM.[101] Y. Lafont. The paradigm of interaction (short version), 1991.[102] Y. Lafont. From proof nets to interaction nets. In Linear Logic Workshop, Cornell University, Mar.1994. MIT Press, to appear.[103] Y. Lafont and T. Streicher. Game semantics for linear logic. In Logic in Computer Science (LICS'91),pages 43{50, Amsterdam, July 1991. IEEE Computer Society Press.[104] J. Lambek. The mathematics of sentence structure. Amer. Math. Monthly, 65:154{169, 1958.[105] J. Lamping. An algorithm for optimal lambda calculus reductions. In Principles of ProgrammingLanguages (POPL'90), pages 16{30, San Francisco, CA, Jan. 1990. Also Xerox PARC technical report,1989.[106] C. Laneve. Optimality and Concurrency in Interaction Systems. PhD thesis, Dip. Informatica, Uni-versit�a di Pisa, Mar. 1993. Also technical report TD{8/93.[107] J. Lilius. High-level nets and linear logic. In K. Jensen, editor, Applications and Theory of Petri Nets,number 616 in LNCS, pages 310{327, She�eld, UK, June 1992.[108] P. Lincoln. Computational Aspects of Linear Logic. PhD thesis, Stanford University, 1992.[109] P. Lincoln. Linear logic. ACM SIGACT Notices, 23(2):29{37, Spring 1992.28

[110] P. Lincoln and J. Christian. Adventures in associative-commutative uni�cation. In Ninth Conferenceon Automated Deduction (CADE'88), number 310 in LNCS, 1988.[111] P. Lincoln and J. Mitchell. Operational aspects of linear lambda caclulus. In Logic in ComputerScience (LICS'92), pages 235{246, Santa Cruz, CA, June 1992. IEEE Computer Society Press.[112] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional linear logic.In Foundations of Computer Science (FOCS'90), volume II, pages 662{671, St. Louis, MO, Oct. 1990.Also SRI International Technical Report SRI-CSL-90-08, Aug. 1990.[113] P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for propositional linear logic.Annals of Pure and Applied Logic, 56:239{311, 1992. Special Volume dedicated to the memory of JohnMyhill.[114] P. Lincoln and A. Scedrov. First order linear logic without modalities is NEXPTIME-hard. Manuscript,Sept. 1992. Available from ftp.cis.upenn.edu: pub/papers/scedrov/mall1.dvi.[115] P. Lincoln and T. Winkler. Constant-only multiplicative linear logic is NP-complete. Manuscript,Sept. 1992. Available from ftp.csl.sri.com: pub/lincoln/comult-npc.dvi.[116] D. Lugiez and J. Moysset. Complement problems and tree automata in AC-like theories. In P. En-jalbert, A. Finkel, and K. Wagner, editors, Proceedings STACS 93, volume 665 of Lecture Notes inComputer Science, pages 515{524. Springer Verlag, Feb. 1993. Available by anonymous FTP fromduck.dfki.uni-sb.de: pub/ccl/inria-lorraine/stacs93.ps.Z.[117] I. Mackie. Lilac|a functional programming language based on linear logic. Master's thesis, Depart-ment of Computing, Imperial College, London, 1991.[118] I. Mackie. �-calculus, linear logic and the �-calculus: A survey, Feb. 1993.[119] G. Malcolm. Equational speci�cation of systems of interacting objects. Talk at the BCS-FACS Christ-mas Meeting Formal Aspects of Object-Oriented Systems, Dec. 16-17 1993.[120] N. Mart��-Oliet and J. Meseguer. From Petri nets to linear logic. In D. Pitt et al., editors, CategoryTheory and Computer Science, number 389 in LNCS, pages 313{340, Manchester, Sept. 1989.[121] N. Mart��-Oliet and J. Meseguer. An algebraic axiomatization of linear logic models. In G. Reed,A. Roscoe, and R. Wachter, editors, Topology and Category Theory in Computer Science, pages 335{357. Clarendon Press, Oxford, 1991. Proceedings of the Oxford Topology Symposium, June 1989.[122] N. Mart��-Oliet and J. Meseguer. From Petri nets to linear logic. Mathemathical Structures in ComputerScience, 1:66{101, 1991. Revised version of paper in LNCS 389.[123] N. Mart��-Oliet and J. Meseguer. From Petri nets to linear logic through categories: A survey. Intl.Journal on Foundations of Computer Science, 2(4):297{399, Dec. 1991.[124] N. Mart��-Oliet and J. Meseguer. Action and change in rewriting logic. Technical Report (to appear),Computer Science Laboratory, SRI International, 1993.[125] N. Mart��-Oliet and J. Meseguer. Rewriting logic as a logical and semantic framework. Technical ReportSRI-CSL-93-05, Computer Science Laboratory, SRI International, Aug. 1993.[126] M. Masseron. Generating plans in linear logic: II A geometry of conjunctive actions (note). TheoreticalComput. Sci., 113, June 1993.[127] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic: I Actions as proofs.Theoretical Comput. Sci., 113, June 1993. Also in Proc. 10-th Conf. Foundations of Software Technologyand Theoretical Computer Science (FST-TCS'90), Banglore, India, LNCS 472, 1990.29

[128] J. Meseguer. A logical theory of concurrent objects. In ECOOP/OOPSLA'90, Ottawa, Ontario, 1990.(SIGPLAN Notices, 25(10):101{115, Oct. 1990).[129] J. Meseguer. Rewriting as a uni�ed model of concurrency. In CONCUR'90: Intl. Conf. on ConcurrencyTheory, number 458 in LNCS, pages 384{400, Amsterdam, Aug. 1990. Also Technical Report SRI-CSL-90-02, SRI International, Feb. 1990.[130] J. Meseguer. Conditional rewriting logic as a uni�ed model of concurrency. Theoretical ComputerScience, 96(1):73{155, 1992. Also Technical Report SRI-CSL-91-05, SRI International, Feb. 1991.[131] J. Meseguer. A logical theory of concurrent objects and its realization in the Maude language. InG. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in Concurrent Object-OrientedProgramming. MIT Press, 1992(?).[132] D. Miller. The �-calculus as a theory in linear logic: Preliminary results. In E. Lamma and P. Mello,editors, Extensions of Logic Programming (ELP'92, 1992. Also University of Pennsylvania technicalreport MS-CIS-92-48, available from ftp.cis.upenn.edu: pub/papers/miller/pic.dvi.Z.[133] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foundation for logicprogramming. Annals of Pure and Applied Logic, 51:125{157, 1991. Special issue on LICS'87.[134] E. Monteiro. Linear logic as CSP. Journal of Logic and Computation, 4(4):405{421, 1994.[135] P. O'Hearn. Linear logic and interference control (preliminary report). In D. Pitt et al., editors,Category Theory and Computer Science, number 530 in LNCS, pages 74{93, Paris, Sept. 1991.[136] M. Okada. Linear logic, Aug. 1992. Tutorial presented at the University of Tokyo (in Japanese).Available by FTP from camille.is.s.u-tokyo.ac.jp /pub/okadasemi/ okadaall.ps.Z.[137] M. Okada. Mobile linear logic as a framework for asynchronous and synchronous mobile communicationcalculi (preliminary report). Technical report, Concordia University, 17 Feb. 1993.[138] V. Pratt. Action logic and pure induction. In J. van Eijck, editor, Logics in AI: European WorkshopJELIA'90, number 478 in LNCS, pages 97{120, Amsterdam, Sept. 1990.[139] V. Pratt. Arithmetic+logic+geometry=concurrency. In First Latin American Symposium on Theoret-ical Informatics (LATIN'92), number 583 in LNCS, pages 430{447, S~ao Paulo, Brazil, Apr. 1992.[140] V. Pratt. The duality of time and information. In W. Cleaveland, editor, CONCUR'92: Third Intl.Conf. on Concurrency Theory, number 630 in LNCS, pages 237{253, Stony Brook, NY, Aug. 1992.[141] V. Pratt. Event spaces and their linear logic. In Algebraic Methodology and Software Technology(AMAST'91), Workshops in Computing, pages 1{23, Iowa City, IA, 1991, 1992. Springer-Verlag.[142] V. Pratt. Linear logic semantics (answer to Jon Barwise). Message on the `Linear' mailing list.Available from theory.stanford.edu: pub/linear, 25 Feb. 1992. File 08.summary.[143] U. S. Reddy. Global state considered unnecessary: Semantics of interference-free imperative program-ming. In ACM SIGPLAN Workshop on State in Programming Languages (SIPL'93), Copenhagen,Denmark, June 1993. Available as Yale University technical report YALEU/DCS/RR-968.[144] U. S. Reddy. A linear logic model of state, Oct. 1993. Manuscript, 29 pages. Available fromcs.uiuc.edu: pub/reddy/papers/ state.full.ps.Z.A shorter preliminary version is in state.dvi,July 1992, 17 pages.[145] D. Roorda. Resource Logics: Proof-theoretical Investigations. Dissertation, University of Amsterdam,Sept. 1991. 30

[146] V. Saraswat. A brief introduction to linear concurrent constraint programming, Apr. 1993. Availablefrom parcftp.xerox.com: pub/ccp/lcc/lcc-intro.dvi.Z.[147] V. Saraswat and P. Lincoln. Higher-order, linear, concurrent constraint programming, July 1992.Available from parcftp.xerox.com: pub/ccp/lcc/hlcc.dvi.Z.[148] A. Scedrov. A brief guide to linear logic. Bulletin of the European Association for Theoretical ComputerScience (EATCS), 41:154{165, June 1990.[149] A. Scedrov. Linear logic and computation: A survey. In H. Schwichtenberg, editor, Proof and Com-putation, Marktoberdorf Summer School, Germany, 1993. Springer-Verlag, 1994. To appear. Availablefrom ftp.cis.upenn.edu: pub/papers/scedrov/mdorf93.dvi.[150] R. Seely. Linear logic, ?-autonomous categories and cofree coalgebras. In J. Gray and A. Scedrov,editors, AMS-IMS-SIAM Joint Summer Research Conference Categories in Computer Science andLogic, number 92 in Contemporary Mathematics, pages 371{382, Boulder, CO, June 1987. AmericanMathematical Society, 1989.[151] A. Troelstra. Lectures on Linear Logic. Number 29 in CSLI Lecture Notes. Center for the Study ofLanguage and Information, Stanford University, 1992.[152] P. Wadler. Linear types can change the world! In IFIP TC 2 Working Conference on ProgrammingConcepts and Methods, pages 546{566, Sea of Galilee, Israel, Apr. 1990. Elsevier Science Pub.[153] P. Wadler. Is there a use for linear logic? In Symp. on Partial Evaluation and Semantics-BasedProgram Manipulation, pages 255{273, Sept. 1991. In SIGPLAN Notices.[154] P. Wadler. A taste of linear logic. In A. Borzyszkowski and S. Soko lowski, editors, MathematicalFoundations of Computer Science (MFCS'93), number 711 in LNCS, Gda�nsk, Poland, Aug. 1993.[155] D. Yetter. Quantales and (noncommutative) linear logic. Journal of Symbolic Logic, 55(1):41{64, Mar.1990.[156] J. Zlatu�ska. Committed-choice concurrent logic programming in linear logic. In G. Gottlob et al.,editors, Computational Logic and Proof Theory. Third Kurt G�odel Colloquium, KGC'93, number 713in LNCS, pages 337{348, Brno, Czech Republic, Aug. 1993.
31

