
The Event Calculus as a Linear Logic ProgramTR95{24Vladimir Alexiev ?University of Alberta, Dept of Comp Sci, 615 GSB, Edmonton, AB T5K 1A2, Canada.<vladimir@cs.ualberta.ca>Abstract. The traditional presentation of Kowalski's Event Calculus as a logic program uses Negation-as-Failure (NAF) in an essential way to support persistence of uents. In this paper we present animplementation of Event Calculus as a purely logical (without NAF) Linear Logic (LL) program. Thiswork demonstrates some of the internal non-monotonic features of LL and its suitability for knowledgeupdate (as opposed to knowledge revision). Although NAF is an ontologically su�cient solution tothe frame problem, the LL solution is implementationally superior. Handling of incomplete temporaldescriptions and support for rami�cations (derived uents) are also considered.Keywords: event calculus, linear logic, negation as failure, knowledge update.1 IntroductionThe Event Calculus (EC) of [Kowalski and Sergot, 1986] is a theory of events (actions) and the uents(predicates) that they precipitate. An important property of the theory is that it is rendered as a logicprogram, and is thus executable. Negation-as-Failure (NAF) plays an important role in this program, ensuringthe persistence of uents through time until the occurrence of an event that terminates them.Historically, EC has been an antithesis of another theory of actions, the Situation Calculus (SC) [Mc-Carthy and Hayes, 1969]. The SC adopts as primitive the notion of situation, the set of all uents that holdbetween two events. Events map one situation to another, the result of applying the event in the situation.The EC purports to make the global notion of situation unnecessary, by letting uents evolve \indepen-dently" in time. This solves the Frame problem: the necessity to reason explicitly about the persistence ofuents between situations. However, EC's use of NAF for persistence somewhat undermines this e�ort, bypresenting both representation and implementation problems (Section 3.1).Linear Logic (LL) [Girard, 1987] is rapidly gaining popularity and applications in Computing Science[Alexiev, 1994], mainly due to its interpretation of formulas as resources and not as timeless properties. Thisfeature of LL makes it possible to account for change in a clean, logical and simple way.This paper purports to use the resource-consciousness of LL to reimplement EC in a purely logicalway and thus overcome the problems related with NAF. We hope that this paper delivers on some of thepromises of LL for applications in AI where change is essential. The rest of the paper is as follows: Section2 introduces the two LL programming languages that we use, Lolli and Lygon. Section 3 describes asimpli�ed version of EC, implements it in LL, and proves a correspondence between the original de�nitionand the LL implementation. Section 4 introduces several extensions to SEC and presents considerations howthey can be accommodated in LL. Finally, Section 5 contains some concluding remarks.2 Linear Logic ProgrammingWe implemented our LL theory of EC in two di�erent LL programming languages, because each of themcontains some features that are not present in the other. Although similar in spirit and genesis, they arequite di�erent in detail. We introduce them briey below.? The author gratefully acknowledges the support of a Killam Memorial Scholarship

2.1 LolliThe language Lolli2 was introduced by [Hodas, 1992; Hodas and Miller, 1994]. It is based on an intuitionisticfragment of LL and Miller's earlier work on �Prolog (and more generally, Uniform Proofs). Accordingly,Lolli is higher-order and handles only single-conclusion sequents. Lolli is implemented in SML and is quitee�ective. A simple module system is provided, however no debugger is available at present. The fragment ofLL that Lolli supports is: R ::= A j > j R&R j A��G j A(G j 8X:GG ::= A j > j G&G j R��G j R) G j 8X:Gj 1 j G
G j G�G j !G j 9X:G j G! GjGThe concrete syntax used by Lolli is as follows:
 P & � �� �� () ! ? 8 9 1 ? > 0 (�)? if-then-else, & ; :- -o <= => f�g forall exists true erase �->�j�2.2 LygonThe language Lygon3 was introduced by [Harland and Winiko�, 1995; Winiko� and Harland, 1994] basedon earlier work of [Harland and Pym, 1994; Harland and Pym, 1992]. It is based on classical LL (and soworks with multiple-conclusion sequents), but is essentially �rst-order.4 Lygon is implemented as a meta-interpreter over BinProlog. An unsophisticated debugger is provided. The fragment of LL that Lygonimplements is:D ::= 9X8Y:D0 j D
DD0 ::= A j A��GG ::= 1 j ? j > j 0 j A j A? j G
G j GPG j G&G j G�G j 9X:G j !G j ?G? j once GLygon has a richer goal sub-language than Lolli, but a poorer clause sub-language. The paper [Har-land et al., 1995] proposes a richer clause language (including integrity constraints G��?), but the currentimplementation supports only the fragment listed above.The concrete syntax used by Lolli is as follows:
 P & � �� �� () ! ? 8 9 1 ? > 0 (�)? commitment* # & @ <- ! ? forall, quant exists, query one bot top zero neg � once3 Simpli�ed Event CalculusWe �rst consider the simpli�ed version of EC (SEC) [Kowalski, 1992], which historically was more widelyused. In subsequent sections we consider extensions of SEC. For simplicity's sake, we assume that theoccurrence times of all events are known, or equivalently, that the events are totally ordered. It would notbe hard to adapt our results for the case of partial ordering of events, but this is not the emphasis of thepresent work.One possible presentation of SEC as a Prolog program is:2 http://www.cs.hmc.edu/ hodas/research/lolli/3 http://www.cs.mu.oz.au/ winikoff/lygon/lygon.html4 One can use the builtin call of the underlying Prolog system though.

holds(F,T) :-happens(Ei,Ti), initiates(Ei,F),happens(Et,Tt), terminates(Et,F),between(Ti,T,Tt), not broken(Ti,F,Tt).broken(Ti,F,Tt) :-happens(E,T), between(Ti,T,Tt),(initiates(E,F1); terminates(E,F1)),exclusive(F,F1).between(T1,T2,T3) :-T1<T2, T2<T3.exclusive(F,F).(here we use mnemonic variables of the form E: Event, F: Fluent, T: Time point). Please note the essentialuse of NAF (not broken) to implement the default persistence of the uent between event occurrences.The \initial conditions" of a narrative and the possibility of non-terminated uents are accounted for by thefollowing additional clauses:initiates(start,F) :-initially(F).happens(start,0).holds(F,T) :-happens(Ei,Ti), initiates(Ei,F),Ti<T, not broken(Ti,F,T).The generic theory above is complemented with a domain-speci�c theory of the forminitially(unloaded). initially(alive).initiates(load,loaded). terminates(load,unloaded).% the following two facts will be qualified later with a precondition holds(loaded)initiates(shoot,dead). terminates(shoot,alive).initiates(shoot,unloaded). terminates(shoot,loaded).exclusive(alive,dead). exclusive(loaded,unloaded).happens(load,1). happens(wait,2). happens(shoot,3).3.1 Shortcomings of NAFSEC as formulated above is an acyclic program5 [Provetti, 1994, Sec. 4.3], therefore all major semantics forlogic programs with NAF agree for the SEC. However, we still see several problems with the use of NAF inEC, some representational and some implementational.{ Some implementations of the Frame axiom through NAF su�er from the following formof over-commitment:if a uent F 0 is derived from a uent F then default persistence may cause F 0 to persist in time evenafter its base F is terminated. This problem is not present in the above presentation of SEC, at leastfor domain theories in which base and derived uents are separated in the sense that no derived uentoccurs in a initiates or terminates clause. See Section 4.2 for further discussion.{ In the extension of SEC with incomplete information (see Section 4.3), NAF leads to over-committedconclusions that certain uents do not hold. Consider this example (from [Pinto and Reiter, 1993]):happens(e1,1). happens(e2,2).initiates(e1,f1). terminates(e2,f2).exclusive(f1,f2).5 But not a locally strati�ed one.

Clark's completion of the EC theory given in [Kowalski and Sergot, 1986] is able to infer the existenceof an intervening event e that initiates f2, but for any t 2 [1; 2], the query holds(f2,t) fails becausethere is no speci�c information about the occurrence of e. This aw largely undermines the usefulnessof the extended EC as described in [Kowalski and Sergot, 1986].{ The present implementation of temporal persistence through NAF is very ine�cient. The predicatebroken has to check all event occurrences, even the events that have nothing to do with the uentat hand. The most constraining subgoal in the clause for broken is exclusive(F,F1), which howevercannot be used early in the clause because initiates and terminates are not necessarily exclusive. Onesolution to this problem is described in [Kowalski, 1992, p.138�]: every fact happens(E,T) is executedforward a couple of steps to derive its initiates and terminates consequences, and these are stored asa cluster indexed by F. This allows fast retrieval of the events that are related to F. In fact the presentpaper implements more or less this solution, in a purely logical theory.3.2 SEC in LolliThe basic idea of our LL implementation of SEC is simple: �rst, we record the initial state of every uentF as an atom int(F,0,infty) (F holds for an interval from 0 to in�nity). These atoms are stored in thelinear part of the execution context, so it is easy to delete and update them. Then an event occurrencehappens(E,T) splits the validity intervals of all concerned events in two, the �rst part keeping the sametruth value as the old interval, and the second part determined by the new event.A Lolli program implementing this ideas is:MODULE sec.LOCAL init record insert.start G :- initially Fs, init Fs G.init nil G :- G.init (F::Fs) G :- int F 0 infty -o init Fs G.happens E T G :- causes E Fs, record Fs T G.record nil T G :- G.record (F::Fs) T G :- insert F T (record Fs T G).insert F2 T G :- exclusive F1 F2, int F1 T1 T2, between T1 T T2,(int F1 T1 T -o int F2 T T2 -o G).exclusive F F.exclusive F (not F).exclusive (not F) F.between T1 T2 T3 :- less T1 T2, less T2 T3.less T1 T2 :- T2=infty -> true | (T1=infty -> fail | T1<T2).holds F T G :- (int F T1 T2, between T1 T T2, erase) & G.holds F T :- holds F T erase.holds F :- holds F infty.prtint.prtint :- int F T1 T2, write (int F T1 T2), nl, prtint.Notes on the Lolli syntax:{ MODULE and LOCAL are declarations concerning the Lolli module system. A module is used by loadingit with the following syntax: M --o G.{ We use the following mnemonic variable names: E: Event, T: Time point, F: Fluent, Fs: a list of Fluents,G: subsequent Goal (continuation).

{ Lolli uses curried predicate syntax (no parentheses and commas).{ The language is higher-order, and this is why we do not have to wrap the variable subgoal G in ameta-predicate call.{ The double colon in (F::Fs) is cons (the list constructor), and nil is the neutral element of lists.Notes about the program:{ We use extensively continuation-passing style. Most often the continuation G is simply passed to thesubgoals, but sometimes more specialized treatment is required. For example the clauseinit (F::Fs) G :- int F 0 infty -o init Fs G.executes the continuation in a context amended with the atom int F 0 infty. As a matter of fact,the reason we used continuations is exactly because there is no other way to insert atoms in the linearcontext: Lolli does not support linear negation. The clauseholds F T G :- (int F T1 T2, between T1 T T2, erase) & G.executes the continuation in an unchanged context, in other words it insulates the computation from thepart enclosed in parentheses, or e�ectively makes that part behave as a simple test.{ start fetches the domain-theory atom initially (see below), starts the list-iterating predicate initand continues with the rest of the goal G.{ Every subgoal happens E T fetches the domain-theory atom causes E Fs, describing the e�ect of theevent E and then iterates over the list of a�ected uents Fs using record.{ insert F2 T consumes the recorded validity interval int F1 T1 T2 of an exclusive uent and splits itin two.6 Before invoking the continuation, it inserts the two subintervals in the linear context.{ exclusive states that every uent is exclusive with itself, and with its negation. The word not here isa simple data constructor and has nothing to do with NAF. For uniformity, we chose to represent thedomain theory with axioms of the formcauses e1 f. causes e2 (not f).instead of the traditionalinitiates e1 f. terminates e2 f.{ less implements a comparison operator that can deal with the special value infty (in�nity). In itsimplementation we used the impure builtin ->�j� (if-then-else) because neither type-checking predicates(number(T)), nor disequality check, are available.{ holds F T checks if uent F holds at time T. It has two variations, one that have a continuation, andanother that checks at time in�nity, which can be interpreted as the current time.{ Finally, o9prtint prints all accumulated validity intervals.Complemented with a domain theory of the formMODULE yale.causes load (loaded :: nil).causes unload (not loaded :: nil).causes shoot (not loaded :: dead :: nil). % will be qualified with holds(loaded)causes wait nil.initially (not loaded :: not dead :: nil).the above program can answer queries such as6 We can assume that there is only one such interval, because there cannot be two exclusive uents holding at thesame time.

?- sec --o yale --o start (happens wait 2 (happens shoot 3 (happens load 1 prtint))).int (not loaded) 0 1int loaded 1 3int (not loaded) 3 inftyint (not dead) 0 3int dead 3 inftysolved
0 1 2 3 infty

loaded

deadThe output above signi�es that loaded holds between times 1 and 3, and that dead holds from 3 to in�nity.The events are speci�ed in the goal instead of in the domain theory in order to activate forward-chaining overthe causes facts. Please note that events do not have to be speci�ed in chronological order, and that waitdoes not cause the problem described in [Hanks and McDermott, 1987] that plagues circumscription-basedimplementations of the Situation Calculus.3.3 SEC in LygonAs motivated in Section 2, we implemented SEC in two di�erent LL programming languages, because neitherof them gives us the full exibility that we need. The Lygon program is similar to the Lolli program:start <- initially(Fs) * init(Fs).init([]) <- bot.init([F|Fs]) <- neg int(F,0,infty) # init(Fs).happens(E,T) <- causes(E,Fs) * record(Fs,T).record([],T) <- bot.record([F|Fs],T) <- insert(F,T) # record(Fs,T).insert(F2,T) <- exclusive(F1,F2) * int(F1,T1,T2) * between(T1,T,T2) *(neg int(F1,T1,T) # neg int(F2,T,T2)).exclusive(F,F).exclusive(F,not(F)).exclusive(not(F),F).between(T1,T2,T3) <- less(T1,T2) * less(T2,T3).less(T1,T2) <-prolog(number(T1)) * prolog(number(T2)) * lt(T1,T2)@ prolog(number(T1)) * eq(infty,T2).eq(X,X).holds(F,T) <- int(F,T1,T2) * between(T1,T,T2) * top.holds(F) <- holds(F,infty).prtint.prtint <- int(F,T1,T2) * print(int(F,T1,T2)) * nl * prtint.The main di�erences are that in init and insert we use linear negation neg to insert the atoms int in thelinear context, and in less we use the underlying BinProlog system for the predicate number.Complemented with a domain theory of the formcauses(load, [loaded]).causes(unload, [not(loaded)]).causes(shoot, [not(loaded), dead]).causes(wait, []).initially([not(loaded), not(dead)]).our program can answer queries of the form

?- start#happens(wait,2)#happens(shoot,3)#happens(load,1)#prtint.int(not loaded,0,1)int(loaded,1,3)int(not loaded,3,infty)int(not dead,0,3)int(dead,3,infty)Succeeded.3.4 Faithfulness of the Proposed ImplementationIn this section we prove that our implementation of SEC in LL is sound and complete with respect to theoriginal de�nition of SEC, i.e. that they produce the same answers.We �rst prove the property informally stated at the end of Section 3.2.Lemma1 (Order-independence). Assuming complete initial information (every uent or its negation isspeci�ed in the initially fact, the answers of the Lolli program of Section 3.2 do not depend on the orderin which happens atoms are given in the goal.7Proof. Let's consider an arbitrary uent F. At any time the set of validity interval atoms about F forms a non-overlapping cover of the interval [0..infty]. This is proved by an easy induction: initially the linear contextcontains exactly one such interval, either int F 0 infty or int (not F) 0 infty. Let's consider the e�ectthat a fact happens E T has on F (assuming that E a�ects F). It splits the unique interval [T1..T2] thatcontains T in two, [T1..T] and [T..T2], even if the two parts assert the same truth value for F. Furthermore,the �nal set of such splittings does not depend on the order the splittings were done. utTheorem2 (Faithfulness). The Prolog program of Section 3 and the Lolli program of Section 3.2 withcorresponding domain theories give the same answers to queries of the form holds(F,t) where t is boundand does not coincide with any of the event occurrence times.Proof. Given the previous lemma (and the trivial fact that the Prolog program does not have an \order ofevents"), we can assume that the events are described in chronological order. Now we can perform a proofby induction on the number of events.Base Case If no events are recorded, both programs answer the query holds(F,t) with the uents F thatare mentioned in initially, independent of the concrete time t (provided it is positive).Induction Step Assume that the claimholds for a sequence of events and let's append an event holds(E,T)at its end. The Lolli program splits the last interval (which extends to in�nity) of every a�ected uentin two, the �rst part retaining the old truth value, and the second part assuming the new truth value.Therefore for any t<T the answers will not be a�ected by the new event, while for T<t<infty the answerscorrespond simply to the uent list in causes E Fs.Now let's turn to the Prolog program. A bit subtler analysis is required because of the interference ofthe two holds clauses (for an internal interval and for the last interval). because in the Prolog programthe new event does not enable any derivations ut4 Extensions to SECIn this section we extend the SEC program described above in various ways, the last of which (Section 4.3)provides for most of the exibility of the original EC [Kowalski and Sergot, 1986]. Other conceivable exten-sions of our approach which are not treated in this paper include:7 Of course, the answers do depend on the times speci�ed in the holds atoms. Also, this lemma will not be validwhen we introduce preconditions to causes predicates.

{ Partially-ordered events.{ Branching time-line and hypothetical events. This would require the maintenance of a more complexinterval structure in the linear context than the simple set of \arrays" we use now.4.1 PreconditionsMany events are preconditioned on uents that must hold for the event to be applicable. In fact the Yaleshooting example as stated above (Section 3.2) does not take into account the domain knowledge that onlyshooting a loaded gun is e�ective. Here we show how preconditions can be added to our formalism.First of all, we assume that the events are recorded in their chronological order, because otherwise aprecondition P of an event E2 depending on a previous event E1 will not be satis�ed if E1 is recorded afterE2. This limitation can be lifted by recording all events in a chronologically-ordered list and then \replaying"them for every query. However such a solution would defy the very spirit of our LL approach, namely that theconsequences of events are computed as soon as possible and queries simply lookup this cached information.To implement this sequencing of events, we found continuations very useful. The (traditional) connectivesof LL are commutative (except for ��), therefore one should not use them to represent sequentially occurringevents.8 Therefore, we drop Lygon at this point and present this extension in Lolli.There are several conceivable approaches to implementing preconditions:1. Preconditions can be \sampled" at the current time, i.e. the time of the event concerned.2. Preconditions can be sampled at time in�nity. In light of the previous remark (the event time being thelatest recorded time point), this is equivalent to 1.3. Preconditions can be sampled at arbitrary times (hopefully somehow related to the current time). Thisapproach allows the greatest exibility, but it requires passing the current time to the causes facts. Thiscan be achieved using quanti�cation in Lolli.As an example we implement the approach 2. First, we change the relevant domain clause fromcauses shoot (not loaded :: dead :: nil).tocauses shoot (precond dead (holds loaded) :: not loaded :: nil).Please note that we had to change the list order of the two results (not loaded and dead), because if notloaded was recorded �rst, it would render the precondition of dead false. To conform to the notion that allresults are e�ected simultaneously, one could adopt approach 1, and postulate that validity intervals includetheir endpoints.We also change one of the clauses for record:record (F::Fs) T G :-F=(precond F1 Pre) -> (Pre -> insert F1 T (record Fs T G)| record Fs T G)| insert F T (record Fs T G).This involves using the impure operator if-then-else to recognize the type of list element (one with or withouta precond), however this use has nothing to do with temporal information. In the clause above, if the elementdoes not have a precondition or the precondition is satis�ed, the element is inserted; else record just continueswith the end of the list.8 In fact Lygon does not take into account the ordering of goals in the text of a program. For example a query a#b#cis run in the order b,c,a.

4.2 Rami�cationsAdding rami�cations (derived uents) does not pose any problem to our approach. Furthermore, rami�cationscan be involved in causes facts.9. For example, if we extend our domain theory withholds alive T G :- holds (not dead) T G.holds unloaded T G :- holds (not loaded) T G.then we can reason about alive on the same footing as its base uent dead.If we also addexclusive alive dead.exclusive unloaded loaded.holds dead T G :- holds (not alive) T G.holds loaded T G :- holds (not unloaded) T G.and the general clausesexclusive F (not F1) :- exclusive F F1.exclusive (not F) F1 :- exclusive F F1.then we can assert causes facts involving either of the uents at will.Accommodating uents that are not related so directly (one being the negation of the other) is slightlymore di�cult. For example we could add a uent peaceful with the clauseholds peaceful T G :- holds (not loaded) T G, holds alive T G.However, the involvement of such uents in causes is more problematic. If we assert that an event causespeaceful, how should this be interpreted, as the event causing both not loaded and alive? What abouta derived uent being the disjunction of two others, or an even more complex formula? Since there is nodirect correspondence between logic connectives and the combinators of a logic of actions (e.g. DynamicLogic [Harel, 1979]), the best approach seems to be to limit such derived uents to the role of observations.4.3 Handling of Incomplete InformationThe original EC [Kowalski and Sergot, 1986] can handle several cases of incompletely speci�ed events, andinfer the existence of unspeci�ed events from constraints imposed by speci�ed events. Assume the domaintheoryinitiates(give(X,Y,Z), has(Z,Y)). terminates(give(X,Y,Z), has(X,Y)).exclusive(has(X,Y), has(Z,Y)) :- not X=Z.happens(give(bob,book,mary),1). happens(give(john,book,jim),2).(here give(X,Y,Z) means \person X gives the object Y to person Z"). Then it can be inferred from theClark's completion of the EC program that an intervening event of Mary giving the book to John (or evena chain of transfers of the book between persons) must have existed. However, due to the over-commitmentcaused by the use of NAF for temporal persistency, for every time T between 1 and 2, the program wouldanswer that both Mary and John have the book. [Sadri and Kowalski, 1995] propose to solve this problemand make the framework generally more exible through the use of positive programs amended with generalintegrity constraints.One form of incomplete information is already handled by the LL programs in Section 3.2 and Sec-tion 3.3. Namely, since the e�ects of an event are recorded even if they already hold (due to the clauseexclusive(F,F).), we can handle the case of an unspeci�ed terminating event.10 More complex cases can9 In the terms of deductive databases, the same predicate can be both EDB and IDB10 This same mechanism allows for event occurrences recorded not in the chronological order

be accommodated by allowing variables in the validity intervals recorded in the linear context. E.g. theexample above can be handled by recording intervals11int(has(mary,book),1,X). int(not has(mary,book),X,infty).int(has(john,book),X,2). int(not has(john,book),2,infty).(under an assumption of minimal number of unspeci�ed transfers), where the variable time X serves totie the uents has(mary,book) and has(john,book) in an appropriate way. One will have to assert theappropriate chronological order by ordering the intervals sequentially in a data structure (e.g. list), but onmore complicated cases a full temporal constraint system will be required.Note A more systematic account of this problem will appear in the �nal version of this paper. More specif-ically, we are interested in investigating the expressiveness of our approach not simply on the examples of[Hanks and McDermott, 1987] and [Kowalski and Sergot, 1986], but in a more formal setting, such as theone given in [Gelfond and Lifschitz, 1993].5 Concluding Remarks5.1 Related WorkThis work is in the general direction of applying LL to AI problems, especially ones where Non-MonotonicReasoning is (or was thought to be) necessary. For a large class of problems only a limited form of non-monotonicity is su�cient, one which does not involve belief revision and database updates with complexformulas. For these problems LL seems to provide a natural purely-logical solution. Examples of such prob-lems are conjunctive planning [Masseron et al., 1993; H�olldobler, 1992; Jacopin, 1993] and hierarchies withexceptions [Fouquer�e and Vauzeilles, 1994]. [Arima and Sawamura, 1993] argue that LL is appropriate for alogic of explanation and abduction.The only work relating EC and LL that we are aware of is [Cervesato et al., 1994]. An implementationof Modal EC in Lolli is presented. The Modal EC is a modi�cation of EC which presumes all events andsome partial ordering given in advance, and determines which uents must necessarily hold or can possiblyhold under all possible re�nements of the ordering.There is no deep relation between the present work and [Cervesato et al., 1994]. It seems that the lattermakes no essential use of the linearity properties of Lolli; in fact the implementation could have beendone in Lolli's non-linear predecessor �Prolog as well. NAF is used to provide temporal persistence inthe same way as in [Kowalski, 1992]; erase is overused; and hypothetical re�nements on the order of events(beforeFact E1 E2) are introduced in the non-linear part of the context (with intuitionistic instead of linearimplication).5.2 Future WorkUsing LL context management provides for a simple purely-logical way of updating temporal information,and it seems preposterous to employ the heavy machinery of NAF for this purpose. However, NAF is stilluseful for more general patterns of deduction. The ability to check for the lack of certain information is useful.However, the result of this check should not be treated in the same way as the information it was basedupon, or else paradoxes, conicting extensions, or at least infeasible techniques, emerge. We are currentlyworking on a \Logic of Objects and Properties" where some (linearly managed) formulas are regardedas \material objects" (resources) that can be produced, consumed, and transformed; and other formulas(classically managed) are regarded as properties of such objects. The absence of a certain object from thecontext (which we see as the main application of NAF) should be regarded as a property of the context.11 Together with the regular intervals int(not has(bob,book),1,infty). int(has(jim,book),2,infty).

Seemingly the Logic of Unity [Girard, 1993] will be useful for such a formalism, but we anticipate severaldi�erences, the most important being presence of two kinds of negation (object-level and property-level).Similar ideas are already appearing in the LL programming literature, e.g. [Harland et al., 1995, p13]say:We would require a Lygon version of Negation-as-Failure, in that we wish to be able to test whethera given resource has been exhausted or not. There is clearly some technical work to be done here, butsuch a facility, which seems a natural feature for a logic programming language, would signi�cantlyenhance the resource-oriented facilities of Lygon.The Lygon documentation mentions that once \will be removed form the language in a future version".5.3 ConclusionsOur presentation of EC as a LL theory demonstrates the possibility of representing change without involvingthe heavy machinery of non-monotonic reasoning. One advantage of using LL in this way over most non-monotonic logics is that they depend on the notion of non-derivability (\if P is not derivable then deriveQ"), whereas change in LL is a straightforward deductive operation. The main advantages of LL over modallogics and their descendants (temporal logics, dynamic logic) are:Locality LL change is local to the involved property/predicate, whereas modal logic has to go to a completelynew world which is only indirectly related (through the accessibility relation) to the current world.Simplicity LL was conceived on the road to simplicity: certain structural rules of classical logic werebanned. Modal logic, on the other hand, was conceived by enriching the set of connectives, and bymaking semantical structures much more complex.Of course, \full-strength" NMR is indispensable in certain reasoning contexts, for example common-sensereasoning. We argue however that it has been overused in contexts where it is better left alone.References[Alexiev, 1994] V. Alexiev. Applications of linear logic to computation: An overview. Bulletin of the IGPL, 2(1):77{107, March 1994. Also University of Alberta TR93{18, December 1993.[Arima and Sawamura, 1993] J. Arima and H. Sawamura. Reformulation of explanation by linear logic: Toward logicfor explanation. In K. P Jantke, editor, 4th International workshop on Algorithmic learning theory, number 744 inLNCS, pages 45{58, Tokyo, Japan, November 1993.[Cervesato et al., 1994] I. Cervesato, L. Chittaro, and A. Montanari. Modal event calculus in Lolli. TechnicalReport CMU-CS-94-198, Carnegie Mellon University, Pittsburgh, PA, September 1994.[Fouquer�e and Vauzeilles, 1994] C. Fouquer�e and J. Vauzeilles. Linear logic and exceptions. Journal of Logic andComputation, 4(6):859{875, 1994.[Gelfond and Lifschitz, 1993] M. Gelfond and V. Lifschitz. Representing actions and change by logic programs. Jour-nal of Logic Programming, 17(2,3,4):301{323, 1993.[Girard, 1987] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[Girard, 1993] J.-Y. Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201{217, 1993.[Hanks and McDermott, 1987] S. Hanks and D. McDermott. Nonmonotonic logic and temporal projection. Arti�cialIntelligence, 33(3):379{412, 1987.[Harel, 1979] D. Harel. First-Order Dynamic Logic, volume 68 of LNCS. Springer-Verlag, 1979.[Harland and Pym, 1992] J. Harland and D. Pym. On resolution in fragments of classical linear logic (extendedabstract). In A. Voronkov, editor, Logic Programming and Automated Reasoning (LPAR'92), number 624 in LNAI(subseries of LNCS), pages 30{41, St. Petersburg, Russia, July 1992.[Harland and Pym, 1994] J. Harland and D. Pym. A uniform proof-theoretic investigation of linear logic program-ming. Journal of Logic and Computation, 4(2):175{207, April 1994.

[Harland and Winiko�, 1995] J. Harland and M. Winiko�. Implementation and development issues for the linearlogic programming language Lygon. In Proceedings of the Eighteenth Australasian Computer Science Confer-ence, pages 563{572, Adelaide, Australia, February 1995. Also available as Technical Report TR 95/6, MelbourneUniversity, Department of Computer Science.[Harland et al., 1995] J. Harland, D. Pym, and M. Winiko�. Programming in Lygon: An overview, April 1995.[Hodas and Miller, 1994] J. S. Hodas and D. Miller. Logic programming in a fragment of intuitionistic linearlogic. Journal of Information and Computation, 110(2):327{365, May 1994. An extended abstract appeared inLICS'91:32{42, July 1991.[Hodas, 1992] J. S. Hodas. Lolli: An extension of �-Prolog with linear logic context management. In 1992 �PrologWorkshop, 1992. Available from ftp.cis.upenn.edu: pub/Lolli.[H�olldobler, 1992] S. H�olldobler. On deductive planning and the frame problem. In A. Voronkov, editor, LogicProgramming and Automated Reasoning (LPAR'92), number 624 in LNAI (subseries of LNCS), pages 13{29,St. Petersburg, Russia, July 1992.[Jacopin, 1993] E. Jacopin. Classical AI planning as theorem proving: The case of a fragment of linear logic. InAAAI Fall Symposium on Automated Deduction in Nonstandard Logics, pages 62{66, Palo Alto, California, 1993.AAAI Press Publications.[Kowalski and Sergot, 1986] R. Kowalski and M. Sergot. A logic-based caclulus of events. New Generation Comput-ing, (4):67{95, 1986.[Kowalski, 1992] R. Kowalski. Database updates in the event calculus. Journal of Logic Programming, pages 121{146,December 1992.[Masseron et al., 1993] M. Masseron, C. Tollu, and J. Vauzeilles. Generating plans in linear logic: I Actions as proofs.Theoretical Computer Science, 113, June 1993. Also in Proc. 10-th Conf. Foundations of Software Technology andTheoretical Computer Science (FST-"Theoretical Computer Science"'90), Banglore, India, LNCS 472, 1990.[McCarthy and Hayes, 1969] J. McCarthy and P. Hayes. Some philosophical problems from the standpoint of arti�-cial intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463{502. Edinburgh UniversityPress, 1969. Also appears in N. Nilsson and B. Webber (editors), Readings in Arti�cial Intelligence, Morgan-Kaufmann.[Pinto and Reiter, 1993] Javier Pinto and Raymond Reiter. Temporal reasoning in logic programming: A case forthe situation calculus. In Intl. Conf. on Logic Programming (ICLP'93), pages 203{221, 1993.[Provetti, 1994] A. Provetti. Hypothetical reasoning: From situation calculus to event calculus. In WorkshopTIME'94, Pensacola Beach, FL, May 1994. Submitted to Computational Intelligence Journal.[Sadri and Kowalski, 1995] Fariba Sadri and Robert A. Kowalski. Variants of the event calculus. In Intl. Conf. onLogic Programming (ICLP'95), Tokyo, Japan, June 1995.[Winiko� and Harland, 1994] M. Winiko� and J. Harland. Implementing the linear logic programming languageLygon. Technical Report 94/23, University of Melbourne, 1994.
This article was processed using the LaTEX macro package with LLNCS style

