
Targeted Communication in Linear Objects�University of Alberta TR 94-14Vladimir Alexievy<vladimir@cs.ualberta.ca>November 1994AbstractLinear Objects (LO) of Andreoli and Pareschi is the �rst proposal to integrate object-orientedprogramming into logic programming based on Girard's Linear Logic (LL). In LO each object is repre-sented by a separate open node of a proof tree. This \insulates" objects from one another which allowsthe attributes of an object to be represented as a multiset of atoms and thus facilitates easy retrievaland update of attributes. However this separation hinders communication between objects. Communi-cation in LO is achieved through broadcasting to all objects which in our opinion is infeasible from acomputational viewpoint.This paper proposes a re�ned communication mechanism for LO which uses explicit communicationchannels speci�ed by the programmer. We name it TCLO which stands for \Targeted Communicationin LO". Although channel speci�cation puts some burden on the programmer, we demonstrate that thelanguage is expressive enough by redoing some of the examples given for LO. Broadcasting can be donein a controlled manner. LO can be seen as a special case of TCLO where only one global channel (theforum) is used.Keywords Linear Objects, communication, broadcasting, objects and logic, linear logic.1 IntroductionThe integration of Object-Oriented Programming (OOP) and Logic Programming (LP) is a long-standinggoal of both the OOP and the LP research communities. The bene�ts of such an integration for bothparadigms are apparent: OOP brings to LP the techniques of modern software engineering, while LP bringsto OOP declarativity to replace the prevalent procedural languages of today. Seemingly the LP communityhas been more active in this e�ort. For a survey see [Dav92].One of the hardest obstacles to an integration of OOP and LP is state change which is inherent in OOPbut (up to until recently) was hard to express logically [Ale93]. Probably the most promising developmentin this area is Girard's Linear Logic (LL) [Gir87]. LL has proved useful in many areas of computation[Ale94], most notably concurrency and resource-based reasoning. (Another promising approach to staterepresentation is Meseguer and Mart��-Oliet's Rewriting Logic [Mes92, MOM93].)Linear Objects (LO) of Andreoli and Pareschi is the �rst proposal for integration of OOP and LPbased on LL. Technically LL bears similarity to an earlier proposal [Con88] in that both approaches allowmultiple atoms in the head of the clauses. The novelty of LL is its �rm foundation in LL, which providesboth a standard model-theoretic semantics based on phase spaces [AP91a, Section 2.4] (see also [CC94]) andproof-theoretical insights for the design of the language. As an example of the latter, the logic connective &is interpreted as object cloning (see Section 2 for details).LO represents objects as separate open leaf nodes of the proof tree being constructed. The attributesof the object are atoms in the multiset context of the node. This allows easy access to the attributes for�Submitted to AMAST'95. Comments are welcome.yDepartment of Computing Science, 615 GSB, University of Alberta, Edmonton, Alberta, T6G 2H1, Canada1

consumption and addition by the methods of the object and makes possible compositional (\built-in") inher-itance. However the separation of objects hinders communication. Indeed, the only communication mode inLO is broadcasting .1 Broadcasting is a powerful communication abstraction, but we deem it computationallyinfeasible and not scalable (see Section 2.1 for discussion). We propose a re�ned communication mechanismfor LO which we name TCLO.This paper is organized as follows. Section 2 gives an overview of LO and explains the disadvantagesof broadcasting. Section 3 describes the proposed extension of LO. Section 4 re-does some of the exampleprograms given by Andreoli and Pareschi to demonstrate that the TCLO style of programming does notsu�er a loss of expressive power. Section 5 concludes the paper.2 Linear ObjectsThe syntax of LO is de�ned over a set of atomic formulas A constructed from predicate names P = fa; b; : : :gand terms in the usual way.A ::= P (htermi; : : :) Atomic formulasG ::= A j > j G1PG2 j G1&G2 GoalsV ::= A j ^A j V1PV2 Views (clause heads)M ::= V ��G Methods (clauses)A context � is a multiset of goals. A program P is a set of methods. Since the program remains the samein every node of a proof tree, we abbreviate the LL sequent !&P ` � to simply � (here !&P denotes themodalized additive conjunction of the elements of P).The operational semantics of LO corresponds almost completely to bottom-up proof construction inLinear Logic [Gir87] (LL) (with the exception of the broadcast operator ^A):>;� >, Termination (success)G1; G2;�G1PG2;� P, Decomposition G1;� G2;�G1&G2;� &, CloningG;�V;� If (V ��G) 2 P Resolution (propagation)The root node in the proof tree of a LO execution is �; C where � is the initial state of the system and C isan unspeci�ed context called the forum and used for communication. The proof tree grows from the root upand it can contain open (not completed) leaf nodes. Computation proceeds according to the following rules:1. Pick an open node (or work in parallel on more than one open node).2. Termination. If the context of the node contains >, close the node according to the > rule.3. Decomposition and Cloning. If the context of the node contains formulas with main connectives Por & decompose them to atoms using repeatedly rules P and &. This may generate more than onesuccessors of the current node.4. Resolution. When the context contains only atoms and if the multiset of atoms is a superset of a clausehead V , rewrite the occurrence of V in the context with the clause body G.5. Broadcasting. If in the previous case V contained some broadcast atoms ^A then add these atoms toall non-closed (open or internal) nodes but the current one. In other words, replace the forum C withA; C0, thus reducing the indeterminacy of the forum.1It is also possible to do term-level (as opposed to formula-level) stream-based communication as in the earlier proposalsbased on concurrent Prologs (see [ST83]), but the inconveniences of this approach are well-known.2

All of the above cases 1{4 correspond directly to inference rules of LL and expand the proof tree by changingan open node locally. However case 5 (the broadcasting rule) changes the proof tree globally by instantiatingC and thus cannot correspond to an inference rule since these always act locally.2.1 The Shortcomings of BroadcastingThe initial version of LO [AP91b] did not include broadcasting and the authors used stream-based (term-level) communication similar to the one in concurrent Prolog implementations of OOP [ST83]. Andreoliand Pareschi introduced broadcasting in [AP91a] and described in great detail its expressive power formodeling inter-object communication. However it is our opinion that broadcasting is not a plausible conceptfor the modeling of large distributed systems and it does not scale well:� Broadcasting is expensive. Its naive implementation leads to slow execution, and an e�cient imple-mentation is hard to achieve (see [BAP92, BAP94] for a discussion).� Broadcasting destroys the locality of interaction (e.g. [BAP94, Sec. 9] uses a central entity to implementbroadcasting), which is a very important principle for large systems of independent agents.� Broadcasting leads to message name clashes. Since every agent sees all messages, one has to usedi�erent names for di�erent messages, even if the messages are semantically similar (e.g. \get" sent toa list and \get" sent to a stack).� Broadcasting makes it hard to partition the program because every method is potentially applicableto every object: even if a method is not currently applicable to an object, the object may receive inthe future enough messages to make the method applicable. In fact not only LO, but all LL-basedOOLP proposals that we know of, treat the program as a monolithic entity. We see this problem as apromising research direction.� Although only a small percent of the broadcasted messages are relevant to any given agent, all agentsreceive all messages and have to store them in their contexts. This leads to \context saturation"(maybe more aptly named \context garbaging"). Andreoli and Pareschi propose to solve this problemusing abstract interpretation [AP92, APC93], but it is better not to allow it in the �rst place.3 Targeted Communication in LOWe propose to extend LO with explicit channels in order to solve the problems described above. We call theproposed extension TCLO.In addition to the set of predicate names P , TCLO features a set of channel variables X = fx;y; : : :g(denoted by bold face). These variables are similar to (but not the same as, see Section 3.3) second-orderlogic variables. We allow atomic formulas to include channels at the term level, e.g. a(x) is a valid formula.Unlike predicate names, channels cannot bear arguments (e.g. a(i) is a valid formula, but x(i) is not). Sinceany atomic formula can be sent along a channel, it would be superuous to allow channels to bear arguments.We modify the de�nitions of goals and views (Section 2) as follows:A ::= P (htermi j X; : : :) Atomic formulasG ::= A j X j > j G1PG2 j G1&G2 GoalsS ::= A j X j S1PS2 Simple views (no sending)V ::= A j X^S j V1PV2 ViewsM ::= V ��G Methods (clauses)Thus we replace broadcasting ^A with message sending along a channel, X^S. The extension of sendingsimple views and not plain atoms is needed to allow renewed communication (see the next section).The operational semantics of TCLO is de�ned by modifying the Resolution and Broadcasting rules ofLO. 3

� Resolution. If the context is at (contains no LL connectives) and a clause head matches V , rewrite theoccurrence of V in the context with the clause body G. A message send x^m in V can be matched eitherif a channel variable appears in the context at the outer level (the variable name need not be the same,e.g. y would match x), or else if the channel is speci�ed explicitly using uni�cation, e.g. V = c(x) P x^awill match a context containing c(y) (and identify x and y) but not one containing y only at the outerlevel. Resolution does not look inside the messages that V sends, e.g. V = c(x) P x^(mPy) requiresthe presence in the context of a channel c(z) but does not care about m nor y.� Message Send. If in the previous case V contained some message sends X^S, replace X everywhere inthe proof tree by S. The occurrence of X in the current node was consumed by the Resolution rule, sothe current node will not receive a copy of the message it sends. However, if the node contained morethan one occurrence of X, the remaining occurrences will be replaced by the message S.The occurrence of a channel X in a context can either be consumed by a message-sending Resolution orreplaced with the message body S during a send initiated by another agent.3.1 Communication Patterns in TCLOHere we describe various communication patterns that occur commonly in TCLO.Multidirectionality TCLO channels are multidirectional: any agent having an occurrence of the channelvariable can write to it. This can be either useful or inconvenient depending on th setting.Many-to-One Communication If an agent contains more than one channel at the top level of its context,it can receive messages along these channels without any interference between them. Thus unlike OOLPbased on concurrent Prolog languages [ST83], no message merging elements are needed. This is dueto the fact that channels are at the logic level, not at the term level.One-to-Many (Group) Communication All the agents connected to a channel will receive the dataplaced on it. Arranging various communication topologies is as simple as passing the channel nameto another agent. During Cloning the channels known to the parent are passed to both childrenautomatically (or if Cloning splits a formula containing channels, they are distributed between the twochildren). If we regard the children open nodes of a given node as a \process group" and if the parentnode has a channel shared among all children, we can easily achieve group communication by writingto this channel.Named vs Unnamed Channels If an agent needs only one channel (that is, it communicates with onlyone agent group), it can use the channel at outer level in its context. However, if an agent has morethan one outgoing channels, it needs to label them with distinct names. For example, an agent mayhave two named channels c(x); d(y) and send messages using clauses likec(x) P x^m �� hnew stateid(y) P y^n �� hnew stateiIncoming channels are usually unnamed to allow easy merging of message streams.Renewable Communication Often a channel is needed to deliver more than one message. While theclause s P x^m �� s0corresponds to a sender s using channel x for a one-shot communicationm, the channel can be renewedusing s P x^(mPy)��s0Py:Responses Usually no separate channel is needed to carry the response to a request. Since the channel isbidirectional, the response can be sent along the renewed channel, similar to the use of �rst-order logicvariables to return answers from function-like predicates.4

3.2 LO as a special case of TCLOIt is easy to see that LO is a special case of TCLO that uses only one channel, the forum. A LO broadcastingclause V P ^A �� Gis replaced by the TCLO clause V P x^(APy) �� GPy:The initial state of the LO program � is replaced by �Px. Thus, what Andreoli and Pareschi call \theunspeci�ed part of the context", we represent explicitly as an unnamed channel.In terms of the \group communication" described in the previous section, LO can be seen to considerthe whole concurrent system as consisting of one communication group, generated by the root node.Although TCLO is an extension of LO, from a practical viewpoint its programming style is a restrictionof the one of LO since the programmer is required to specify explicitly the communication channels and totake care of distributing them among agents. Section 4 suggests that this restriction is not a severe one.3.3 TCLO and Second-Order LLAlthough TCLO channel variables are similar to second-order variables in linear logic, the two are not thesame. We tried to describe TCLO communication as second-order uni�cation (that is to say, existentialintroduction under the bottom-up reading), but found it impossible to do so. Unfortunately TCLO su�ersfrom the same impossibility to ascribe true logical rules to its communication as LO, and for the same reason:while every logical rule acts locally on an open node, TCLO communication involves \distant action" inseparate branches of the proof tree.On the other hand, channel variables are used rather restrictively compared to the possible uses of second-order variables. This obviates the need for full second-order uni�cation and simpli�es implementation.4 Programming ExamplesIn this section we redo some of the examples given for LO in order to demonstrate that TCLO-style pro-gramming su�ers no loss of expressive power. In fact we �nd that the non-directed nature of broadcasting issometimes confusing to the programmer (Won't mymessage cause any adverse interference in other objects?)and to the reader of a program (Where is this message going to?).4.1 The Optimal Path ProblemThis example is taken from [APB91, Section 3]. The problem isGiven a weighted-edge acyclic directed graph with a distinguished source s and target t (a net-work), �nd a path from s to t with the smallest possible weight.The solution is based on dynamic programming and is easily adapted from [APB91]. For simplicity, werestrict the solution to use only one representation of the network (every node stores the set of its outgoingedges), we implement only \forward chaining" algorithm, and we destructively modify the network represen-tation during the path search. Also, our example network is smaller than the one in [APB91] (see Figure 1).Each edge is labeled with its weight and the channel variable corresponding to the edge (see below). Theoptimal path is drawn bold.We represent the network as follows:network ��(node(s) P in(0) P e(5,A1) P e(6,B1) P e(4,C1)) &(node(a) P in(1) P A1 P e(2,D1) P e(5,E1)) &5

s

a

b

c

d

e t

f

3,E2

2,D1

1,D2 2,T1

1,T2

2,T3

1,F1

6,B1

4,E3

5,A1

4,C1

5,E1Figure 1: Example of a Weighted-Edge Network(node(b) P in(1) P B1 P e(1,D2) P e(3,E2)) &(node(c) P in(1) P C1 P e(4,E3) P e(1,F1)) &(node(d) P in(2) P D1 P D2 P e(2,T1)) &(node(e) P in(3) P E1 P E2 P E3 P e(1,T2)) &(node(f) P in(1) P F1 P e(2,T3)) &(node(t) P in(1) P T1 P T2 P T3).Every node is represented as a separate agent (expressed by & above). For every node we store its namenode(_). Unlike the LO solution, these names are included only for the purpose of printing the found pathin readable form, and not for communication between nodes. We record the node's input arity and forevery incoming edge create a separate channel (denoted by uppercase). The outgoing edges are representedby the atoms e(W,C) storing their weights and a channel to the destination node. Please note that theincoming channels are represented at the higher (formula) level, while outgoing channels are hidden at thelower (term) level. This allows an agent to have easy uniform access to all its incoming messages yet todi�erentiate between its outgoing channels.The agents work through two phases: selection and spreading. These phases occur asynchronously inthe network, forming a \wave front" moving from s to t.1. During the select phase, the agent receives best-path o�ers from each of its predecessors in the formof atoms path(C,P) where C is the cost of the path and P is a list of the nodes comprising the path.The agent discards all but the best o�er.select P in(I) P path(C1,P1) P path (C2,P2) P fC1<=C2g ��select P in(I-1) P path(C1,P1). ; discard suboptimal offersselect P in(1) �� spread. ; move to the next phase2. During the spread phase the agent propagates this best path to all its successors, adding its name andthe weight of the outgoing edge to the path.spread P path(C,P) P node(M) P e(W,N) P N^path(C+W,P::M) ��spread P path(C,P) P node(M). ; send message. :: is appendThe program is started by a goal of the form�� network P source(s) P target(t) P output(O) P select.6

All of the atoms source, target, output and select are delivered to all agents (&-components of network),although only the source and target nodes make use of the �rst three. The special clauses for the source andtarget nodes arenode(S) P source(S) P select �� node(S) P path(0,[]) P spread.node(T) P target(T) P path(C,P) P spread P output(O)O^path(C,P::T) �� >. ; output result and terminate4.2 Distributed Active ParsingIn [AP91a, Section 3.2] Andreoli and Pareschi describe an LO implementation of active parsing for context-free (and possibly ambiguous) grammars. The term \active" refers to the feature that incomplete phrasaltrees are considered active agents which look for and consume complete trees. The parser is composed ofthe agents shown on Figure 2, adapted from [AP91a]. We renamed the agent create tree to dispatcher
itree

entry

scanner

agent CH

message send

Legend:

create

seek
rule

target

new ctree

pos word

createcreator R

grammar dictionary

dispatcher

bboard

mbox C,I

B

P

G D

subscribe

itree
answer

O
ctree,Figure 2: Distributed Active Parser: Agents and Flow of Informationand added the agents bboard, creator, mbox, and some messages. The bold letters denote typical channelvariables used to talk to a particular agent.The distinction between agents and messages is mainly a conceptual one, because both are represented byatoms. However while every method referencing an agent atom in its head reinstates it in its body, messageatoms are not reinstated and are thus consumed. Thus agents are relatively long-lived and messages areshort-lived.This example is more involved both for the reader to understand (it is more complex), and for theprogrammer to create (it uses generative communication [Gel85] which we have to represent using targetedcommunication). Our program is shown below.1: parse(Input,Symbol,O) ��2: (scanner(Input,0,Symbol,O,P2,G2,D)) &3: (grammar(P1)PG1PG2) &4: (dictionary(B2)PD) &5: (dispatcher(G1,B1)PP1PP2) &6: (bboard(R)PB1PB2) & 7

7: (creatorPR).8: scanner([],N,S,O,P,G,D) P9: G^seek(0,S) P10: P^target(O,N,S) �� >.11: scanner([W|I],N,S,O,P,G,D) P12: G^(pos(N)PG1) P13: D^(word(W,N)PD1) ��14: scanner(I,N+1,S,O,P1,G1,D1).15: grammar(P) �� replicate(P) P16: rule(s,[np,vp]) P rule(np,[det,n]) P rule(np,[pn]) P17: rule(np,[np,pp]) P rule(vp,[tv,np]) P rule(vp,[vp,pp]) P18: rule(pp,[prep,np]).19: replicate(P) P rule(S,Ss) P20: P^(P1PP2) ��21: replicate(P1) & rule(S,Ss,P2).22: rule(S,Ss,P) P seek(N,S) P pos(N) P23: P^(new(N,N,S,Ss,S)PP1) �� rule(S,Ss,P1).24: dictionary(B) �� replicate(B) P25: entry(a,det) P entry(robot,n) P entry(telescope,n) P26: entry(terry,pn) P entry(saw,tv) P entry(with,prep).27: replicate(B) P entry(W,S) P28: B^(B1PB2) ��29: replicate(B1) & entry(W,S,B2).30: entry(W,S,B) P word(W,N) P31: B^(message(N,S,ctree(N,N+1,S,S-W)PB1)) �� entry(W,S,B1).32: dispatcher(G,B) P new(0,N,S,[],T) P target(O,N,S) P33: O^(answer(T)PO1) ��34: dispatcher(G,B) P target(O1,N,S).35: dispatcher(G,B) P new(M,N,S,[],T) P36: B^(message(M,S,ctree(M,N,S,T))PB1) ��37: dispatcher(G,B1).38: dispatcher(G,B) P new(M,N,S,[S1|Ss],T) P39: G^(seek(N,S1)PG1) P40: B^(message(N,S1,itree(M,N,S,S1,Ss,T,P))PB1) ��41: dispatcher(G1,B1)PP.42: itree(M,N,S,S1,Ss,T,P) P ctree(N,P,S1,T1) P43: P^(new(M,P,S,Ss,T-T1)PP1) ��44: itree(M,N,S,S1,Ss,T,P1).45: bboard(R) P ctree(M,N,S,T) P mbox(M,S,C,I) P46: C^(ctree(M,N,S,T)PC1) ��47: bboard(R) P mbox(M,S,C1,I).48: bboard(R) P itree(M,N,S,S1,Ss,T,P) P mbox(N,S1,C,I) P49: I^subscribe(itree(M,N,S,S1,Ss,T,P),I1) ��50: bboard(R) P mbox(N,S,C,I1).51: bboard(R) P message(N,S,Msg) P mbox(N,S,C,I) ��52: bboard(R) P Msg P mbox(N,S,C,I).53: bboard(R) P message(N,S,Msg) P54: R^create(C,I,R1) ��55: bboard(R) P Msg P mbox(N,S,C,I).56: creator P create(C,I,R) ��57: (creatorPR) & (mboxPCPI). 8

58: mbox P subscribe(ITree,I) ��59: (mboxPI) & ITree.We describe the computation and communication aspects of the parser separately in the following twosections. The section on computation is sketchy since the algorithm is essentially the same as the one in[AP91a]. We put the emphasis on interconnecting the agents, thus the section on communication is moredetailed.4.2.1 ComputationThe agents bboard, creator and mbox have only communication functions, so we describe them in the nextsection. In this section we generally omit channel variables. Numbers in parentheses refer to program lines.parse The program is started by a goal of the form parse(Input,Symbol,O) specifying the input list (e.g.[terry, saw, a, robot, with, a, telescope]), the target (initial) non-literal symbol (e.g. s for\sentence") and the output channel. Parse (1) creates the \static" agents of the parser (2-7) andinterconnects them.scanner The agent scanner is of the form scanner(I,N,S) where I is the remainder of the input list, Nis the current input position and S is the initial non-terminal. Scanner decomposes (11) the inputlist to a series of pos(N) (12) and word(W,N) (13) messages which it sends to the grammar and thedictionary respectively. When the input list is exhausted (8), scanner sends a \seeding" messageseek(0,S) to the grammar (9) meaning \Try to parse non-terminal S starting at position 0", andinforms the dispatcher about the target channel and non-terminal and the �nal position (10).grammar The grammar (15) is a set of rules(S,Ss) (16-18) specifying that the non-terminal S can bereplaced with the list Ss. Every rule responds to seek(N,S)messages (22) by requesting the creationof a new incomplete tree using the new(N,N,S,Ss,S) message (23). The \side condition" pos(N)ensures that the rule will �re no more than once for every position.dictionary The dictionary (24) is a set of entries(W,S) (25-26) specifying that word W is of category S.Every entry responds to word(W,N) messages (30) by producing a complete (although very simple)one-node phrasal tree over that word and then submitting that ctree(N,N+1,S,S-W) to the bboard(31) for further processing. (For a reason explained later, this message has to be wrapped in a messageatom.)dispatcher The dispatcher (32-41) handles tree creation requests of the form new(M,N,S,Ss,T) wherethe tree T is rooted at non-terminal S, the known part of the tree spans input positions M: : :N, and theunknown part of the tree starts at position N and consists of the \concatenation" of trees rooted at theelements of the list Ss. The dispatcher distinguishes between three cases:1. If the unknown part is not empty (38, the pattern [S1|Ss]), an incomplete tree itree(M,N,S,S1,Ss,T)is produced (40). Also, seek(N,S1) is sent to the grammar (39) to initiate parsing the incompletepart.2. If the unknown part is empty (35, []) then a complete tree ctree(M,N,S,T) is produced (36). Thearguments mean that there is a phrasal tree T rooted at the non-terminal symbol S and spanninginput positions M: : :N. Together with the \primitive" ctrees produced by the dictionary (31),these play the role of building blocks that are put together by itrees (see below).3. If the unknown part is empty and the tree spans the whole input and the tree is rooted at thetarget non-terminal S (32), then dispatcher puts the tree at the output channel (33). Sincethis case is a specialization of the previous one, it is possible that method (35) will �re insteadof method (32). Aside from being ine�cient, this will do no harm because the ctree will travelthe loop dispatcher - bboard - mbox - itree and come back to dispatcher (see Figure 2).9

Under some fairness assumptions, (32) will eventually �re and spit the ctree out, thus breakingthe loop.itree If we compared ctrees to building blocks, we should compare itrees to masons. An itree(M,N,S,S1,Ss,T)(42) consumes ctrees that \mesh" with it, meaning that they start in the input position where theitree ends, and are rooted at the required non-terminal S1, i.e. are of the form ctree(N,P,S1,T1).Then the itree attaches this ctree to itself (43) by joining the ranges M: : :N and N: : :P to M: : :P, andconnecting the trees T and T1 using the constructor `-'2, to form T-T1. The result is sent back todispatcher for further dispatching.4.2.2 CommunicationWe re�ne the algorithm in [AP91a] by establishing channels between agents, i.e. making explicit the owof information depicted on Figure 2. Some of the interconnection techniques we use are \standard" and wealready described them in Section 3.1.One-to-One Communication For example, program lines (2-7) interconnect the static agents using thesame technique as in Section 4.1, namely incoming channels at the formula level and outgoing channelsat the term level.One-to-Many Communication All rules (resp. entries) receive messages through their parent, grammar(resp. dictionary). This is achieved by including the channel in the context cloned by & (line 21,resp. 29).Many-to-One Communication Every rule needs to talk to the dispatcher (resp. every entry needs totalk to the bboard). To avoid contentions, the channel must be replicated (lines (20), resp. (28)).In addition to these \standard" optimizations, we exploit the fact that every itree only cares aboutctrees that \mesh" with it (see the end of the previous subsection and line (42)). We re�ne communicationto itree so that every itree receives only relevant ctrees.3 The agents bboard, mbox and creator cameinto existence due to this optimization. We describe them below.mbox There is a \mail box" mbox4 (58) for every combination (M,S) of starting position M and root symbolS (these being the ctree-itree \meshing" parameters) that occurs during parsing. To each mbox areattached a number of itrees that we call subscribed to the mbox. In fact, the mbox creates5 theseitrees using cloning (59). Every one of these itrees sees every ctree message sent to the mbox,including the ones sent after its creation. Conversely, a newly created itree will inherit all the ctreemessages already sent to the mbox.bboard The agent bboard (45-55) (\bulletin board", or \billboard", or \blackboard") manages the accessto and creation of mboxes.Managing Mbox Access (45-50) The bboard holds channels to every mbox in atoms mbox/4 and itscontext looks like this at runtime:bboard(R), mbox(N1,S1,C1,I1), : : :, mbox(Nn,Sn,Cn,In)where n is the current number of mboxes, R is a channel to the creator (see below), (N,S) is the\key" of the mbox, channel I is used to send itree messages to the mbox (49), and channel C isused for ctree messages (46). We use two separate channels because we want all children itrees2This is a convenient graphical notation for \cons", it is not arithmetic minus.3A similar consideration concerning rule and seek (22) could be exploited. We do not pursue it here, the case of itree andctree being more involved.4Initially we called mboxes \channels" (being inspired by Internet's Inter Relay Chat), but then we decided to change thename in order to avoid conict with the predominant use of the word \channel" in this paper.5More precisely, emancipates to the rank of agents. 10

of a mbox to see all ctree messages sent to it, but none of the itree messages. To this end thembox lets ctree messages go through transparently (it even does not have a method for handlingsuch messages), but appropriates the I channel before doing cloning (59), so the ITree does notget access to that channel. The renewal of C and I is also being done di�erently: \externally" forC (46) and \by mutual consent" for I (49).Managing Mbox Creation (51-55) When a message(N,S,Msg)6 is sent to bboard, it has to createa (N,S)-indexed mbox i� no such exists already. The method (51) works when the mbox exists bysimply unwrapping the message that will then be picked by either (45) or (48). The method (53)works when the mbox does not exist by asking creator to create it (54) and then unwrappingthe message as in the previous case. Unfortunately (53) can �re even if the mbox already exists,unless the language implementation utilises a Most-Speci�c-First scheduling strategy. Unlike theconict (32){(35) (see the description of dispatcher above), this conict (51){(53) is not harmlessbecause it creates spurious mboxes. Thus we assume that the implementation supports such ascheduling strategy.creator Finally, creator (56) is a very simple agent that creates mboxes with nothing in the context buttwo channels C and I (57). We cannot create mboxes directly from bboard because bboard carriesmany atoms in its context that do not belong to the mbox being created.5 Concluding RemarksWe described TCLO, a re�nement of LO with explicit channels. We have shown that LO is a specializationof TCLO that uses only one channel. Our work can be seen as a less-ambitious approach to the problem ofe�ciency of LO since we provide language means to achieve what Andreoli and Pareschi purport to achieveusing compilation techniques (in particular, abstract interpretation and partial evaluation).5.1 Future WorkA CHAM-based semantics of TCLO (adapted from the one for LO, [ALPT93][CC94]) is under development.The exact relation of our channel variables to second-order variables, and the non-linear properties ofchannels should be investigated. For example, channel replication calls for the use of contraction, thusexponentials.We wonder what are the limits of abstract interpretation for the optimization of communication. Forexample we doubt that the manual optimization we did with bboard/mbox can be achieved using abstractinterpretation.All the LL-based OOLP approaches we are aware of deal with a constant program (the left sides of allsequents are the same). Modularization of the program into class-based units and OOP phenomena such asmethod overriding should be investigated.5.2 Related WorkTCLO is similar to Hewitt and Agha's Actors [Agh86] in that communication is capability (acquaintance)based. Unlike Actors, in TCLO the channels are not interpreted as identities (mailboxes), since an agentcan have more than one input channel and can create and drop channels dynamically.To date, there are only a few proposals for integration of OOP and LP based on Linear Logic. LO was the�rst one. Saraswat and Lincoln proposed lcc [SL92][Sar93] and independently Kobayashi and Yonezawaproposed ACL [KY94a][KY94b]. They recast the earlier renditions of Milner's �-calculus as LL theories[BS92, Mil92] into the LP paradigm of \computation as proof search" (e.g. ACL is dubbed \process calculusin logical form"). These languages contain two crucial ingredients of objects: state change (provided for by6Here Msg is either ctree or itree. 11

linear logic) and message-based communication. However they are not speci�cally object-oriented becausethey lack object attributes.References[Agh86] Gul Agha. Actors: A model of concurrent computation. In Distributed Systems. MIT Press,1986.[Ale93] V. Alexiev. Mutable object state for object-oriented logic programming: A survey. TechnicalReport TR93{15, University of Alberta, August 1993. Available from ftp.cs.ualberta.ca:pub/TechReports/TR93-15, �le TR93-15.ps.Z or TR93-15.a4.ps.Z.[Ale94] V. Alexiev. Applications of linear logic to computation: An overview. Bul-letin of the IGPL, 2(1):77{107, March 1994. Available from theory.doc.ic.ac.uk:theory/forum/igpl/Bulletin/V2-1/ Alexiev.ps.gz.Also University of Alberta TR93{18, De-cember 1993.[ALPT93] J.-M. Andreoli, L. Leth, R. Pareschi, and B. Thomsen. True concurrency semantics for a linearlogic programming language with broadcast communication. In Theory and Practice of SoftwareDevelopment (TAPSOFT'93), pages 182{198, 1993.[AP91a] J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowledge. In Object-Oriented Programming, Systems, Languages and Applications (OOPSLA'91), pages 212{229,November 1991. ACM SIGPLAN Notices, 26(11).[AP91b] J.-M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance. NewGeneration Computing, 9(3-4):445{473, 1991. Shorter version appeared in D.H.D. Warren and P.Szeredi (eds), Intl. Conf. on Logic Programming (ICLP'90), Jerusalem, Israel, June 1990, pages495{510.[AP92] J.-M. Andreoli and R. Pareschi. Associative communication and its optimization via abstractinterpretation. Submitted to TCS (but seems to never have appeared), 1992.[APB91] J.-M. Andreoli, R. Pareschi, and M. Bourgois. Dynamic programmingas multiagent programming.Technical Report ECRC-91-13, ECRC, M�unchen, 1991.[APC93] J.-M. Andreoli, R. Pareschi, and T. Castagnetti. Abstract interpretation of linear logic program-ming. In International Logic Programming Symposium (ILPS'93), pages 295{314. MIT Press,1993.[BAP92] M. Bourgois, J.-M. Andreoli, and R. Pareschi. Extending objects with rules, composition andconcurrency: the LO experience. In OOPSLA'92 Workshop \Object-Oriented Languages: TheNext Generation", 1992. Also technical report ECRC-92-26.[BAP94] M. Bourgois, J.-M. Andreoli, and R. Pareschi. Concurrency and communication: Choices inimplementing the coordination language LO. In R. Guerraoui, O. Nierstrasz, and M. Riveill,editors, Proc. of the ECOOP'93 Workshop on Object-Based Distributed Programming, number791 in LNCS, pages 73{92, 1994.[BS92] G. Bellin and P.J. Scott. On the �-calculus and linear logic. Manuscript to be submitted to Proc.MFPS 8, Oxford, November 1992.[CC94] S. Castellani and P. Ciancarini. Comparative semantics of LO. Technical Report UBLCS-94-7, University of Bologna, April 1994. Availabile by anonymous FTP from ftp.cs.unibo.it:/pub/TR/UBLCS/SemanticsOfLO.ps.gz. 12

[Con88] John S. Conery. Logical objects. In Robert A. Kowalski and Kenneth A. Bowen, editors, Intl.Conf. and Symp. on Logic Programming (ICLP'88), pages 420{434, 1988.[Dav92] A. Davison. A survey of logic programming-based object-oriented languages. Technical Report92/3, University of Melbourne, January 1992. Fourth revision; �rst published April 1989.[Gel85] D.H. Gellernter. Generative communication in Linda. Transactions on Programming Languagesand Systems, 7(1):80{113, 1985.[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.[KY94a] N. Kobayashi and A. Yonezawa. Asynchronous communication model based on linear logic.Formal Aspects of Computing, (3), 1994. Short version appeared in Joint Intl. Conf. and Symp.on Logic Programming (JICSLP'92), Washington, DC, November 1992, Workshop on LinearLogic and Logic Programming.[KY94b] N. Kobayashi and A. Yonezawa. Typed higher-order concurrent linear logic program-ming. Technical Report 94-12, University of Tokyo, July 1994. Available by FTP fromcamille.is.s.u-tokyo.ac.jp /pub/papers/ TR94-12-hacl-a4.ps.Z.[Mes92] J. Meseguer. Multiparadigm logic programming. In G. Levi and H. Kirchner, editors, ThirdIntl. Conf. on Algebraic and Logic Programming (ALP'92), number 632 in LNCS, pages 158{200,Volterra, Italy, September 1992.[Mil92] D. Miller. The �-calculus as a theory in linear logic: Preliminary results. In E. Lammaand P. Mello, editors, Extensions of Logic Programming (ELP'92), 1992. Also Univer-sity of Pennsylvania technical report MS-CIS-92-48, available from ftp.cis.upenn.edu:pub/papers/miller/pic.dvi.Z.[MOM93] N. Mart��-Oliet and J. Meseguer. Action and change in rewriting logic. Technical Report (toappear), Computer Science Laboratory, SRI International, 1993.[Sar93] V. Saraswat. A brief introduction to linear concurrent constraint programming, April 1993.Available from parcftp.xerox.com: pub/ccp/lcc/lcc-intro.dvi.Z.[SL92] V. Saraswat and Patrick Lincoln. Higher-order, linear, concurrent constraint programming, July1992. Available from parcftp.xerox.com: pub/ccp/lcc/hlcc.dvi.Z.[ST83] Ehud Shapiro and Akikazu Takeuchi. Object-oriented programming in Concurrent Prolog.New Generation Computing, 1:25{48, 1983.
13

